Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Feature-driven Deformation for Dense Correspondence Deboshmita Ghosh, Andrei Sharf, and Nina Amenta
 

Summary: Feature-driven Deformation for Dense Correspondence
Deboshmita Ghosh, Andrei Sharf, and Nina Amenta
Department of Computer Science, University of California, Davis, California
ABSTRACT
Establishing reliable correspondences between object surfaces is a fundamental operation, required in many
contexts such as cleaning up and completing imperfect captured data, texture and deformation transfer, shape-
space analysis and exploration, and the automatic generation of realistic distributions of objects. We present a
method for matching a template to a collection of possibly target meshes. Our method uses a very small number of
user-placed landmarks, which we augment with automatically detected feature correspondences, found using spin
images. We deform the template onto the data using an ICP-like framework, smoothing the noisy correspondences
at each step so as to produce an averaged motion. The deformation uses a differential representation of the mesh,
with which the deformation can be computed at each iteration by solving a sparse linear system.
We have applied our algorithm to a variety of data sets. Using only 11 landmarks between a template and one
of the scans from the CEASAR data set, we are able to deform the template, and correctly identify and transfer
distinctive features, which are not identified by user-supplied landmarks. We have also successfully established
correspondences between several scans of monkey skulls, which have dangling triangles, non- manifold vertices,
and self intersections. Our algorithm does not require a clean target mesh, and can even generate correspondence
without trimming our extraneous pieces from the target mesh, such as scans of teeth.
Keywords: Dense correspondence, Template fitting
1. INTRODUCTION

  

Source: Amenta, Nina - Department of Computer Science, University of California, Davis

 

Collections: Biology and Medicine; Computer Technologies and Information Sciences