Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
In Defense of Euclidean Proof Edward T. Dean1
 

Summary: In Defense of Euclidean Proof
Edward T. Dean1
August 8, 2008
1This thesis is a report on joint work carried out with Jeremy Avigad and John
Mumma.
ii
Contents
1 Introduction 1
2 The Diagrammatic Proof System E 5
2.1 Syntax and Structure of Proofs . . . . . . . . . . . . . . . . . 5
2.2 Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Construction Rules . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Demonstration Rules . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Derived Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 A Conservative Extension . . . . . . . . . . . . . . . . . . . . 16
3 Illustrative Constructions in E 17
3.1 Some Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Some More Technical Constructions . . . . . . . . . . . . . . . 19
4 The Adequacy of E 23
4.1 What Form Completeness? . . . . . . . . . . . . . . . . . . . . 23

  

Source: Avigad, Jeremy - Departments of Mathematical Sciences & Philosophy, Carnegie Mellon University

 

Collections: Multidisciplinary Databases and Resources; Mathematics