 
Summary: On hermitianholomorphic classes related to uniformization, the
dilogarithm, and the Liouville Action
Ettore Aldrovandi
Department of Mathematics
Florida State University
Tallahassee, FL 323064510, USA
aldrovandi@math.fsu.edu
Abstract
Metrics of constant negative curvature on a compact Riemann surface are critical points of the Liouville
action functional, which in recent constructions is rigorously defined as a class in a Ÿ
Cechde Rham complex with
respect to a suitable covering of the surface.
We show that this class is the square of the metrized holomorphic tangent bundle in hermitianholomorphic
Deligne cohomology. We achieve this by introducing a di#erent version of the hermitianholomorphic Deligne
complex which is nevertheless quasiisomorphic to the one introduced by Brylinski in his construction of Quillen
line bundles. We reprove the relation with the determinant of cohomology construction.
Furthermore, if we specialize the covering to the one provided by a Kleinian uniformization (thereby allowing
possibly disconnected surfaces) the same class can be reinterpreted as the transgression of the regulator class
expressed by the BlochWigner dilogarithm.
Contents
