Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network

  Advanced Search  

Complex surfaces with vanishing cohomology and projective closures

Summary: Complex surfaces with vanishing cohomology
and projective closures
Giuseppe Tomassini and Viorel V^aj^aitu
1 Introduction
A classical result (see [2], [4]) asserts that an open subset D of C2
is Stein (or a
domain of holomorphy) if, and only if, the additive Cousin problem is always
solvable on D. Furthermore, this condition is equivalent to the vanishing of
(D, O). Motivated by this kind of result in a series of papers ([18], [19],
[20], [21]) the following problem is considered. "Let M be a non-singular
complex surface and D M an open set such that H1
(D, O
) vanishes.
Under what reasonable conditions on M it follows that D is Stein?"
A positive answer is stated for the following cases, namely M is projective,
or D is relatively compact and either M has positive holomorphic bisectional
curvature or that M is weakly 1-complete.
Subsequently we shall (re-)prove this result in a more general setting (we
allow also singularities), see Theorem 1 from below. Before stating it, let


Source: Abbondandolo, Alberto - Scuola Normale Superiore of Pisa


Collections: Mathematics