Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
EULER AND BERNOULLI NUMBERS AND Tewodros Amdeberhan
 

Summary: EULER AND BERNOULLI NUMBERS AND
s
Tewodros Amdeberhan
Department of Mathematics, Temple University, Philadelphia PA 19122, USA
tewodros@euclid.math.temple.edu
We recall that the `even-index' Bernoulli numbers, B2n are de ned by the generating
function relation:
1-e x
ex ,1 + 1
2x =
1X
n=0
B2n
2n!x2n;
and the `odd-index' Euler numbers, E2n+1 by the relation:
1-o xsecx =
1X
n=0
E2n+1
2n +1!x2n+1:

  

Source: Amdeberhan, Tewodros - Department of Mathematics, Tulane University

 

Collections: Mathematics