Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
CHARACTERISTIC CYCLES OF LOCAL COHOMOLOGY MODULES OF MONOMIAL IDEALS
 

Summary: CHARACTERISTIC CYCLES OF LOCAL COHOMOLOGY
MODULES OF MONOMIAL IDEALS
JOSEP ALVAREZ MONTANER
Abstract. We study, by using the theory of algebraic D­modules, the
local cohomology modules supported on a monomial ideal I of the local
regular ring R = k[[x 1 , . . . , x n ]], where k is a field of characteristic zero.
We compute the characteristic cycle of H r
I (R) and H p
m (H r
I (R)), where
m is the maximal ideal of R and I is a squarefree monomial ideal. As a
consequence we can decide when the local cohomology module H r
I (R)
vanishes and compute the cohomological dimension cd(R, I) in terms of
the minimal primary decomposition of the monomial ideal I. We also
give a Cohen­Macaulayness criterion for the local ring R/I and compute
the Lyubeznik numbers # p,i (R/I) = dim k Ext p
R
(k, H n-i
I

  

Source: Alvarez Montaner, Josep - Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya

 

Collections: Mathematics