Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Timing and significance of maximum and minimum equatorial insolation
 

Summary: Timing and significance of maximum and minimum
equatorial insolation
Yosef Ashkenazy1
and Hezi Gildor2
Received 18 February 2007; revised 6 September 2007; accepted 27 September 2007; published 31 January 2008.
[1] Variations in summer insolation at high northern latitudes on a timescale of 100 ka are very small. Thus a
common belief is that the pronounced $100 ka glacial cycles are not directly linked to the very weak 100 ka
insolation periodicity. Here we show, analytically and numerically, that the annual maximum (and minimum) of
daily equatorial insolation has pronounced eccentricity periodicities, with timescales of $400 ka and $100 ka,
as well as a pronounced half-precession periodicity with timescale of $11 ka. The timing of the maximum (and
minimum) annual equatorial insolation may change around the equinoxes (solstices), alternating between the
vernal and autumnal equinoxes (summer and winter solstices) where the time of the maximum (minimum)
equatorial insolation may occur up to more than 1 month from the equinoxes (solstices). We also show that when
considering the mean insolation of periods larger than 1 d, the $11 ka periodicity becomes less dominant, and it
vanishes when the averaging period is half a year; for the later case the maximum (minimum) may occur for any
day in the annual cycle. The maximum equatorial insolation may alter the timing and amplitude of the maximum
surface temperature of the summer hemisphere and in this way may drastically affect the Hadley circulation.
Changes in Hadley circulation affect the heat and moisture transport from low to high latitudes, affecting the
buildup of the high-latitude Northern Hemisphere ice sheets.
Citation: Ashkenazy, Y., and H. Gildor (2008), Timing and significance of maximum and minimum equatorial insolation,

  

Source: Ashkenazy, Yossi "Yosef" - Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research,Ben-Gurion University of the Negev
Gildor, Hezi - Institute of Earth Sciences, Hebrew University of Jerusalem

 

Collections: Environmental Management and Restoration Technologies; Environmental Sciences and Ecology; Geosciences; Physics