Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Stephen Simons Minimax and Monotonicity
 

Summary: Stephen Simons
Minimax and Monotonicity
Springer­Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest

Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter I. Functional analytic preliminaries
1. The Hahn--Banach and Mazur--Orlicz theorems . . . . . . . . . 13
2. Convex, concave and a#ne functions . . . . . . . . . . . . . . . . . . . . 15
3. The minimax theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. The dual and bidual of a Banach space . . . . . . . . . . . . . . . . . . 18
5. The minimax criterion for weak compactness in a
Banach space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6. Four examples of the ``minimax technique'' --- Fenchel
duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7. The perfect square trick and the fg--theorem . . . . . . . . . . . 27

  

Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics