Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
On Square Roots of M-Matrices G. Alefeld* and N. Schneider
 

Summary: On Square Roots of M-Matrices
G. Alefeld* and N. Schneider
FB 3 / Mathematik
Technische Universität Berlin
Strasse des 17. Juni 135
1()()()Berlin 12, Gernwny
Submitted by Hans Schneider
ABSTRACT
The question of the existence and uniqueness of an M-matrix which is a square
root of an M-matrix is discussed. The results are then used to derive some new
necessary and sufficient conditions for a real matrix with nonpositive off diagonal
elements to be an M-matrix.
1. INTRODUCTION
Following Ostrowski [3], a real n by n matrix A=(ai;) is called an
M-matrix if it can be written in the fonn
A=sI- B, s>O, B~O, p(B)~s. (1)
Here p denotes the spectral radius and I is the writ matrix. If p(B) is called a rwnsingular M-matrix; otherwise, a singular M-matrix.
In this paper we discuss the existence and uniqueness of an M-matrix
which is a solution of the equation

  

Source: Alefeld, Götz - Institut für Angewandte und Numerische Mathematik & Fakultät für Mathematik, Universität Karlsruhe

 

Collections: Mathematics