Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
LETTER Communicated by Steven Nowlan Neural Network Uncertainty Assessment Using Bayesian
 

Summary: LETTER Communicated by Steven Nowlan
Neural Network Uncertainty Assessment Using Bayesian
Statistics: A Remote Sensing Application
F. Aires
faires@giss.nasa.gov
Department of Applied Physics and Applied Mathematics, Columbia University, NASA
Goddard Institute for Space Studies, New York, NY 10025, U.S.A., and CNRS/IPSL/
Laboratoire de M´et´eorologie Dynamique, ´Ecole Polytechnique, 91128 Palaiseau Cedex,
France
C. Prigent
catherine.prigent@obspm.fr
CNRS, LERMA, Observatoire de Paris, Paris 75014, France
W.B. Rossow
wrossow@giss.nasa.gov
NASA Goddard Institute for Space Studies, New York, NY 10025, U.S.A.
Neural network (NN) techniques have proved successful for many re-
gression problems, in particular for remote sensing; however, uncertainty
estimates are rarely provided. In this article, a Bayesian technique to eval-
uate uncertainties of the NN parameters (i.e., synaptic weights) is first
presented. In contrast to more traditional approaches based on point es-

  

Source: Aires, Filipe - Laboratoire de Météorologie Dynamique du CNRS, Université Pierre-et-Marie-Curie, Paris 6
Goddard Institute for Space Studies (NASA)

 

Collections: Environmental Sciences and Ecology; Geosciences