 
Summary: \Omega\Gamma1/1 n= log log n). We also thank Amotz BarNoy for helpful discussions. An anony
mous referee provided many comments that improved the presentation.
REFERENCES
[1] B. Awerbuch, ``Complexity of Network Synchronization,'' Journal of the ACM, Vol. 32, No. 4
(1985), pp. 804823.
[2] B. Awerbuch and D. Peleg. ``Sparse partitions,'' IEEE Symp. on Foundation of Computer
Science, 1990, pp. 503513.
[3] B. Awerbuch and M. Saks. ``A dining philosophers algorithm with polynomial response time.''
IEEE Symp. on Foundation of Computer Science, 1990, pp. 6574.
[4] V.C. Barbosa and E. Gafni. ``Concurrency in heavily loaded neighborhoodconstrained sys
tems.'' ACM Trans. Programming Languages and Systems, Vol. 11, 1989, pp. 562584.
[5] J. BarIlan and D. Peleg. ``Distributed resource allocation algorithms.'' International Workshop
on Distributed Algorithms, 1992, pp. 276291.
[6] A. BarNoy, H. Shachnai and T. Tamir. ``On Chromatic Sums and Distributed Resource Allo
cation.'' 4th. Israel Symposium on Theory and Computing Systems, 1996.
[7] K. Chandy and J. Misra. ``The drinking philosophers problem.'' ACM Trans. Programming
Languages and Systems, Vol. 6, 1984, pp. 632646.
[8] M. Choy and A. K. Singh. ``Efficient fault tolerant algorithms in distributed systems.'' Proc.
24th ACM Symposium on Theory of Computing, 1992, pp. 593602.
[9] R. Cole and U. Vishkin. ``Deterministic coin tossing and accelerating cascades: micro and macro
