Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Maximal regularity for nonautonomous evolution Institut fur Mathematik,
 

Summary: Maximal regularity for nonautonomous evolution
equations
H. Amann
Institut f¨ur Mathematik,
Universit¨at Z¨urich, Winterthurerstr. 190, CH­8057 Z¨urich, Switzerland
e-mail: amann@math.unizh.ch
To Antonio Ambrosetti for his 60th
birthday
Abstract
We derive sufficient conditions, perturbation theorems in particular, for nonau-
tonomous evolution equations to possess the property of maximal Lp regularity.
1991 Mathematics Subject Classification. 35K90, 47D06.
Key words. Maximal regularity, perturbation theorems, nonautonomous parabolic evolution equations.
1 Introduction
Let E0 and E1 be Banach spaces such that E1 is continuously and densely embedded
in E0. Suppose that J is a nontrivial compact subinterval of R+
containing zero,
and 1 < p < . Then
W1
p J, (E1, E0) := W1

  

Source: Amann, Herbert - Institut für Mathematik, Universität Zürich
Monniaux, Sylvie - Centre de Mathématiques et Informatique, Université de Provence

 

Collections: Mathematics