Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Rings and Algebras Problem set #2. Sept. 22, 2010. 1. Show that the converse of Schur's lemma does not hold.
 

Summary: Rings and Algebras Problem set #2. Sept. 22, 2010.
1. Show that the converse of Schur's lemma does not hold.
2. Let V be a vector space over a field K. Show that R = End(VK) is left primitive but not
necessarily simple. Describe the ideal structure of R.
3. Show that if R = End(VK) as above then R has a minimal left ideal and conclude that every
simple faithful left R-module is isomorphic to RV .
4. Let R be a left primitive ring and 0 = e R an idempotent element. Show that S = eRe is
also left primitive.
5. Show that for K a field of characteristic 0 the Weyl-algebra A1(K) = K x, y /(xy - yx - 1) is
left primitive.
6. Decide whether the following implications are true:
a) A ring R is left primitive if and only if the full matrix ring Mn(R) is left primitve.
b) A ring R is prime if and only if the full matrix ring Mn(R) is prime.
7. a) Suppose the path algebra KG is finite dimensional. Give a precise condition for KG to
be primitive (prime, resp.).
b) Show that KG (without the assumption on the dimension) is prime if and only if for each
pair of vertices i, j in G there is an (oriented) path from i to j.
8. Show that the fact that R End(VD) is 1-transitive does not imply that R is dense in End(VD)
(although it follows that V is a simple faithful R-module). (Hint: Construct an example where
End(RV ) is strictly larger than D.)

  

Source: Ágoston, István - Institute of Mathematics, Eötvös Loránd University

 

Collections: Mathematics