 
Summary: Compositio Mathematica 70: 5199, 1989
© 1989 Kluwer Academic Publishers. Printed in the Netherlands 51
Intertwining operators and residues II. Invariant distributions
JAMES ARTHUR*
Department ofMathematics, University of Toronto, Toronto MSS IAI, Canada
Received 9 September 1986; accepted in revised form 27 September 1988
Contents
1. Residues . ..... ........ .... ... .... 54
2. irdiscrete distributions ............... . .. . . .. . 58
3. Admissible families of operators .......... ............. 67
4. The main formula ............. ... ............. 74
5. Completion of the induction argument .................... 83
6. Cuspidal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7. Conclusions ................................ 94
Introduction
Suppose that G is a reductive algebraic group over a field F ofcharacteristic
0. In the text we shall usually take F to be a general local field, but for
purposes ofillustration let us assume in the introduction that Fis isomorphic
to R. In the paper [l(e)] we introduced the weighted characters
JM(nA, f), 7 E n(M(F)), A E a*C,f e 9(G(F)).
