Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
THE HARDY UNCERTAINTY PRINCIPLE REVISITED M. COWLING, L. ESCAURIAZA, C. E. KENIG, G. PONCE, AND L. VEGA
 

Summary: THE HARDY UNCERTAINTY PRINCIPLE REVISITED
M. COWLING, L. ESCAURIAZA, C. E. KENIG, G. PONCE, AND L. VEGA
Abstract. We give a real-variable proof of the Hardy uncertainty principle.
The method is based on energy estimates for evolutions with positive viscosity,
convexity properties of free waves with Gaussian decay at two different times,
elliptic L2-estimates and the invertibility of the Fourier transform on L2(Rn)
and S (Rn).
1. Introduction
There are different ways of stating uncertainty principles for the Fourier trans-
form: a function f and its Fourier transform
^f() =
1

2 R
e-i·x
f(x) dx, R,
can not be highly concentrated unless f is zero. Among them one finds the Hardy
uncertainty principle (A1) [10] (see also [16, pp.131]), its extension (A2) established
in [4] and the Beurling-H¨ormander result (B) in [11]:
(A1) If f(x) = O(e-x2

  

Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics