Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Tuning bandit algorithms in stochastic environments
 

Summary: Tuning bandit algorithms in stochastic
environments
Jean-Yves Audibert1
and R´emi Munos2
and Csaba Szepesv´ari3
1
CERTIS - Ecole des Ponts
19, rue Alfred Nobel - Cit´e Descartes
77455 Marne-la-Vall´ee - France
audibert@certis.enpc.fr
2
INRIA Futurs Lille, SequeL project,
50 avenue Halley, 59650 Villeneuve d'Ascq, France
remi.munos@inria.fr
3
University of Alberta, Edmonton T6G 2E8, Canada
szepesva@cs.ualberta.ca
Abstract. Algorithms based on upper-confidence bounds for balancing
exploration and exploitation are gaining popularity since they are easy
to implement, efficient and effective. In this paper we consider a variant

  

Source: Audibert, Jean-Yves - Département d'Informatique, École Normale Supérieure
Szepesvari, Csaba - Computer and Automation Research Institute, Hungarian Academy of Sciences

 

Collections: Chemistry; Computer Technologies and Information Sciences