Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Walking in Circles Michal Feldman
 

Summary: Walking in Circles
Noga Alon
Michal Feldman
Ariel D. Procaccia
Moshe Tennenholtz
Abstract
We show that for every x1, . . . , xn, y1, . . . , yn S1
there exists i {1, . . . , n} such that
n
k=1 d(xi, xk)
n
k=1 d(xi, yk), where S1
is the unit circle and d is the distance on S1
. We
also discuss a game theoretic interpretation of this result.
1 Introduction
Let x1, . . . , xn, y1, . . . , yn R, and denote N = {1, . . . , n}. We claim that there exists i N such
that
kN
|xi - xk|

  

Source: Alon, Noga - School of Mathematical Sciences, Tel Aviv University

 

Collections: Mathematics