Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Reconstruction of algebraic sets from dynamic Gabriela Putinar and Mihai Putinar 1
 

Summary: Reconstruction of algebraic sets from dynamic
moments
Gabriela Putinar and Mihai Putinar 1
Address. Department of Mathematics, University of California, Santa
Barbara, CA 93106, U.S.A.
E-mail addresses. gputinar@att.net mputinar@math.ucsb.edu
Abstract. We discuss an exact reconstruction algorithm for time ex-
panding semi-algebraic sets given by a single polynomial inequality. The
theoretical motivation comes from the classical L-problem of moments, while
some possible applications to 2D fluid moving boundaries are sketched. The
proofs rely on an adapted co-area theorem and a Hankel form minimization.
R´esum´e. Nous pr´esentons un algorithme de reconstruction exacte pour
des domaines s´emi-alg`ebriques croissants en temps, qui sont donn´es par une
seule inegalit´e polyn^omiale. La motivation th´eoretique vient du L-probl`eme
classique des moments, et nous esquissons une application possible aux flu-
ides 2D avec des fronti`eres mobiles. Les d´emonstrations sont bas´ees sur le
th´eor`eme de la co-aire et utilisent aussi la minimization d'une forme de Han-
kel.
Mathematics Subject Classification 2000: 44A60, 65R32, 14P05
Keywords: L-problem of moments, algebraic domain, Hankel matrix

  

Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics