Home

About

Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network
FAQHELPSITE MAPCONTACT US


  Advanced Search  

 
Math. Res. Lett. 14 (2007), no. 00, 10001100NN c International Press 2007 FINDING FIBRE FACES IN FINITE COVERS
 

Summary: Math. Res. Lett. 14 (2007), no. 00, 10001100NN c International Press 2007
FINDING FIBRE FACES IN FINITE COVERS
D. D. Long & A. W. Reid
1. Introduction
A well-known conjecture about closed hyperbolic 3-manifolds asserts that the first
Betti number can be increased without bound by passage to finite sheeted covers. If
the manifold is fibred, it is not difficult to see that a strengthening of this conjecture
is that the number of fibred faces (see 2.1 for the definition of a fibred face) of the
unit ball of the Thurston norm can be made arbitrarily large by passage to finite
sheeted covers. The main result of this note is the following.
Theorem 1.1. Suppose that M is a closed arithmetic hyperbolic 3-manifold which
fibres over the circle.
Then given any K N, there is a finite sheeted covering of M for which the unit
ball of the Thurston norm has > K fibred faces.
A consequence of Theorem 1.1 (see 2 for a proof) is:
Corollary 1.2. Let M be a closed arithmetic hyperbolic 3-manifold that fibres over
the circle. Then the rank of its second homology can be increased without bound.
While this follows from a stronger result proved in [4] (subsequently reproved in
[1] and [11]), namely that the conclusion of Corollary 1.2 holds for an arbitrary closed
arithmetic hyperbolic 3-manifold with positive first Betti number, the proof given

  

Source: Akhmedov, Azer - Department of Mathematics, University of California at Santa Barbara

 

Collections: Mathematics