Advanced Search

Browse by Discipline

Scientific Societies

E-print Alerts

Add E-prints

E-print Network

  Advanced Search  

Partition Equilibrium Always Exists in Resource Selection Games

Summary: Partition Equilibrium Always Exists
in Resource Selection Games
Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY.
Abstract. We consider the existence of Partition Equilibrium in Re-
source Selection Games. Super-strong equilibrium, where no subset of
players has an incentive to change their strategies collectively, does not
always exist in such games. We show, however, that partition equilib-
rium (introduced in [4] to model coalitions arising in a social context)
always exists in general resource selection games, as well as how to com-
pute it efficiently. In a partition equilibrium, the set of players has a
fixed partition into coalitions, and the only deviations considered are by
coalitions that are sets in this partition. Our algorithm to compute a
partition equilibrium in any resource selection game (i.e., load balanc-
ing game) settles the open question from [4] about existence of partition
equilibrium in general resource selection games. Moreover, we show how
to always find a partition equilibrium which is also a Nash equilibrium.
This implies that in resource selection games, we do not need to sacrifice
the stability of individual players when forming solutions stable against
coalitional deviations. In addition, while super-strong equilibrium may


Source: Anshelevich, Elliot - Department of Computer Science, Rensselaer Polytechnic Institute


Collections: Computer Technologies and Information Sciences