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Abstract

A hybrid FEM/MoM moddel has been implemented to compute
the coupling of fields into a cavity through narrow slot apertures hav-
ing depth. The model utilizes the slot model of Warne and Chen
[23] - [29] which takes into account the depth of the slot, wall losses,
and imhonogeneous dielectrics in the slot region. The cavity interi-
or is modeled with the mixed-order, covariant-projection hexahedral* -
elements of Crowley [32]. Results are given showing the accuracy
and generality of the method for modeling geometrically complex slot-
cavity combinations.
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1 Introduction

Electromagnetic coupling can adversely impact a multitude of applications
ranging from modern telecommunication systems to sophisticated electronic
warfare equipment. The primary coupling issues are electromagnetic compat-
ibility and interference, either intentional or unintentional. The functionality
of the systems involved, which typically consist of numerous subsystems op-
erating concurrently, can be characterized in terms of their susceptibility,
vulnerability and survivability in the electromagnetic environment in which
they are expected to operate.

To design effectively hardened, complex operational systems, it is critical
to characterize the worst case electromagnetic coupling, that is, the upper
bound of the fleld penetrating a system and the distribution of the energy
within that complicated system. System performance may be compromised
by a variety of penetration mechanisms. In this study, it is assumed that
the shield is constructed from good electrical conductors so diffusion can be
ignored and isolated so conductive effects are negligible. Back-door coupling
occurs through inadvertent cracks and gaps, created by warping or bowing,
at the mechanical interfaces between pieces of a shielded enclosure. These
back-door phenomena are much less predictable or controllable, and so merit
particular interest and study.

Coupling through unforeseen apertures such as the tortuous-path, lapped
seam depicted in Figure 1 into conducting cavities is the major thrust of this
work. To model realistic coupling problems, it is necessary to develop a model
which includes a three-dimensional representation of the slot/cavity config-
uration. Specifically, such a model should incorporate narrow slot apertures
having depth, loss and gaskets, backed by arbitrarilyv-shaped cavities, filled
with inhomogeneous, lossy dielectrics. The model should also incorporate
the effect of the finite conductivity of the enclosure walls.

The conceptual formulation for the cavity-backed aperture has been pre-
sented in detail by Harrington and Mautz [1] as well as Butler, Ramat-Samii
and Mittra [2]. The generalized network formulation presentation in the for-
mer is an extension of the work published by Harrington in a 1968 book [3].
In both papers, the problem is segmented into an interior and an exterior
region. Equivalent problems are formulated for the two regions and coupled
through the boundary conditions in the aperture. In these formulations, the
interior and exterior are generally considered to be homogeneous and, ex-
cept for the aperture, the regions are isolated by good electric conductors.
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Wang, Harrington and Mautz considered not only transmission into, but al-
so scattering from. conducting bodies with arbitrary apertures [4]. [n this
work, they formulated the three-dimensional problem for arbitrarily shaped
bodies and apertures; however, only zero thickness slots were considered. In
addition, the interior region did not include inhomogeneous media since an
integral equation method was used.

In 1988 Taflove et al. applied a FDTD technique to the analysis of narrow
slots and lapped joints in a two-dimensional conducting screen [3|. This paper
recognized the importance of narrow slot apertures, in particular the tortuous
paths associated with lapped joints.

Following the work of Merewether [6], Riley and Turner applied the FDTD
technique to the analysis of a cavity-backed aperture loaded by boxes and
terminated wires. Their hybrid thin slot algorithm [7] advances the earlier
work of Gilbert and Holland [8]. Later in 1990, they incorporated the model
of Warne and Chen into an FDTD analysis of a narrow slot aperture having
depth and losses into a regularly shaped cavity [9].

The demand for solutions of aperture/cavity problems has brought progress
in numerical techniques and their application. Historically, finite-difference
techniques have received greater attention in electromagnetics; the use of the
finite-element method has been more recent. Subsequently, hybrid techniques
using boundary integral/modal expansion techniques, method of moments
(MOM) /finite-difference/time-domain methods as well as finite-element /boundary
integral formulations have become commonplace [10], (20]. Non-zero thick-
ness was incorporated by using finite-difference (FD) techniques or finite-
element methods (FEM) to solve the interior problem increasing the compu-
tational size of the problem considerably. In recent years, the finite-element
method has proven to be a useful EMC prediction tool [21], [22].

The research performed to date demonstrates the maturity of hybrid nu-
merical methods in electromagnetics. The only slot/cavity work that in-
corporated a practical slot model was the effort of Riley and Turner {7].
However, their finite-difference implementation was not conducive to curved
surfaces and neicher included wall loss nor dielectric inhomogeneities. Thus,
another formulation and solution are required to include additional features
in the model of a real world system.

In this paper, we present a hybrid numerical technique which can be used
to calculate the amount of energy penetrating a system through a narrow
slot aperture with depth and, at the same time, to determine its disposi-
tion; that is, of the power available in an impinging wave, how much is lost

3




during transmission through the aperture and dissipated in the walls and
dielectrics occupying the interior, and how much is delivered to loads, or
components. within the configuration. Specifically. this involves computing
the electromagnetic coupling through narrow slot apertures into complex
cavities (arbitrarily shaped, with an inhomogeneous dielectric loading). The
slot models of Warne and Chen (23] - [29] are coupled to a three-dimensional
vector FEM formulation for the interior cavity region. Warne and Chen’s
slot model avoids the need to resolve a tortuous path slot with a very fine
finite-element or finite-difference mesh while being general enough to include
dielectrics in the slot interior, slot wall losses, and bolt loading across the slot
[30]. In addition, the slot model can be extended to include very deep slots
in which a resonance is excited in the depth direction. A comparison is made

between experimental and numerical results for several different slot-cavity
combinations to validate the model. ‘

2 Coupled Slot-Cavity Model

Consider the slot geometry in Figure 2. The depth through the slot may be

a tortuous path more characteristic of overlapped joints. Warne and Chen’s
model assumes that '

Zsloty A > Po > d (l)
The slot walls are assumed to have a large but finite conductivity so that
they can be characterized by the usual perturbation:
: Jwp o e
Zi=Rs +jXs= | —= (1 + — 2
iXo= [~ ) |5 @)

Consider Figure 3. The governing integro-differential equation is given as

47, dz? ey 2
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H (o) + LBl gy I (2)

= —H*(2) (3)

where
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and

R,=\pi+(z=2)° (5)

The half length of the slot is A, and p, is the radial distance on the illuminated
side. The transmission-line coefficient terms are

Zpo = Zint + j'JJLpo (6)
Z'int = R + jw[‘int

Ypo = G + jwcpo (7)

The parameters L,, and C,, are the per-unit-length transmission line pa-
rameters for the slot with lossless walls and no gasket. The parameters R,
Lins, and G represent the per-unit-length transmission-line parameters for
the slot when the walls are lossy and a lossy gasket material is contained in
the slot. Note that Equations (3) - (7) are dependent on the radial distance,
0o, which is arbitrary. '

Using the equivalent antenna radius derived by Warne and Chen (24],25],
and assuming that the field in the unilluminated region, H, is in an infinite
half-space, the slot equations, evaluated at p, = a, become

AN Ao ey (g

H {(a,z
Sla2)+ 4 dz? 4
where
d? h —~jkR
H- (a,2) = K:j) <d~2 +k2>} /Im () 64“ 5 (9)
Zh
and
AYy = G + jwC,, — jwCs, (10)
i
AY, = _ (11)

o [ ext int 5o ezt
]‘“[’po + Zpo Jwls;

The terms. AYs and AY7 represent the excess capacitance and inductance
p p
per-unit-length of the slot due to wall losses and the presence of a lossy gasket
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L Quantity | Description

G Accounts for losses in the gasket material
. in the interior of the slot
Ca, i Local external®* capacitance per-unit-

length without the gasket present (walls
may have finite conductivity)

Cp, Local external®* capacitance per-unit-
length with the gasket present (walls may
have finite conductivity)

Lf,f‘a Local external® inductance per-unit-length
without the gasket present (assuming per-

fectly conducting walls)

L3 Local external* inductance per-unit-length
with the gasket present (assuming perfect-
ly conducting walls)

Z;’:t Internal impedance per-unit-length which
accounts for losses within the walls and in-
cludes changes in the inductance due to
variations of the magnetic field outside the
walls due to finite internal** conductivity

* External to the conducting walls

] ** Internal to the conducting walls

Table 1: Gasket and Slot Parameters




not taken into account by the equivalent antenna radius, a. Table 1 gives a
summary of the terms included in AYe and AYy. '

We now want to add a shielded enclosure in the unilluminated region.
Consider the cavity-backed narrow slot aperture shown in Figure 4 with a
plane wave impinging from the left half-space, z < 0. The first term in
(3) represents the total field on the unilluminated. or cavity side. In the
half-space case, this term is combined with the scattered field expression on
the illuminated side since the Green’s function is the same for both region-
s. Removal of the p, dependence in the half-space case was achieved by
expanding the integral for the scattered field and canceling terms of the lo-
cal transmission-line parameters, Z,, and Y,,. With an enclosure, the same
approach is taken except that the field on the unilluminated side will be
written as a sum of a half-space scattered field identical to that used in the
pure half-space case and a difference field:

HF (por2) = HI (po, 2) + AH. (po, 2) (12)
= —H; (po,2) + AH. (s, 2) (13)
where as before
h .
HS ] dQ 2 ! e—]kRO / -
oy = -5 k m = - o
H5 o) = | (L) (2 +#)| [ 10 ) Tt = 7 (o)
“h
(14)

~ Therefore, the governing integral equation becomes

1 L, o I
27, dz¢ "2

_AH, (5o, 2) +«[2H; (90s2) + } - _HC(:)  (15)

If we use the procedure of Warne and Chen, the p, dependence in the second
term of (15) is eliminated yielding

AY; &1, (2) 3 AYe
2 dz? 2

Note that the difference field is still dependent on the arbitrary distance
parameter, g,. < ?

»
For the unilluminated side, the governing equation is the vector wave
equation:

~AH, (po, 2) + 2H; (a,2) + [ (2) = ~H]® (16)

1 — o —
Vx ~Vx H —pklH =-2 (17)
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where the # component of H' is given by (12). To solve the slot/cavity
coupling problem, we determine the z component of the difference field at a
radius p, from the aperture wall. This is accomplished by either: 1) solving
(16), with M specified in terms of I,,, and subtracting the half-space field,
or 2) computing the difference field directly. In either case, the boundary
conditions on the total field must be enforced. At the surface of a perfect
electric conductor we have:

A x Vx H =0 (18)
where the unit normal points outward from the cavity volume. At the surface

of a good conductor, we relate the electric and magnetic field via the surface
impedance:

E. =27, (ﬁw xH') (19)
or more-conveniently as
Ao X V x H = jweZsfy X oy x H (20)

where 7, points from the conducting wall into the cavity volume.

Solution of (17) is simpler in terms of enforcing the boundary conditions,
but involves added complication because the equivalent magnetic current M
must “drive” the cavity. Although possible, this can lead to numerical prob-
lems because the mesh density must be fine enough to adequately represent
the magnetic current along the slot. This somewhat defeats the purpose of
using the local transmission-line model. Here, we take the second approach
and solve for the difference field directly. Instead of a forced problem we
solve the homogeneous wave equation, with M = 0:

Vx—vxH - 1k T =0 (21)
€r

Since the half-space fleld, 7" S, is a solution of the homogeneous wave equa-
tion we obtain the following result upon substitution of (12) into (21):

Vx 7 x AH - prkiAH =0 (22)
€

The forcing function for this problem becomes the incident. half-space field
via Equations (20) and (12).
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3 Hybrid Numerical Model

Here, we discuss the numerical solution of the governing equations previously
formulated. We shall first discuss the discretization of the integral equation
(16). Then the finite element method solution of the three-dimensional vector
wave equation is given. The hybrid technique utilized in the solution of
slot/cavity problems will then be presented.

3.1 Method of Moments

The unknown is the equivalent magnetic current, /,,. Just as in the thin-wire
“dipole problem, it is convenient to utilize piecewise sinusoids. The magnetic
_ current is approximated by

Nslot

L= Aub.(2) (23)

n=1

where A4, is a complex constant to be determined and b, (z) are the piecewise
sinusoidals. Each basis function is described mathematically as

sinfb(zn=al4da)l L < <, 4]
>~ = 4n

k(s(in[kAZI }
= sin[k((z—zn)+Az) . -
bn (Z) sinfkAz] v Zn-1 S < S <n : (24)
0 otherwise
where
A_Z':Z”‘(’l_zn v 77,:1,2,..,’,/ slot

AZ = 2Zn — Zn_] v n = 17 27 v )"I\/'Slot (25)

Using the Galerkin method to discretize (16) yields the N x N system of
equations:

(el + [T¥E] - [T78] - (€] {4} = - {5°) (26)

where the entries for each matrix are

e B s I A e T
Yo = bi (2) Ez—z——z—k b, (") dz'dz  (27)

25wlo Js _az Zn—Az R,




e AYy [ a,
Y, = ——7£ b () < ~b,, (:)) dz (28)

- Zym—AZ dz*
AYg [omte2
TYS. =5/ b; (2) by (2) dz (29)
Zm+Az
ff = / b (z) H3Cdz (30)
Zm -z
Zm Az -
Cfn—/ . b (2) AH. (po, z) dz (31)

Note that there are two unknowns in (26): the coefficients, A, of the slot
magnetic current and the difference field, AH, (p, z). The next section will
discuss the numerical formulation for the unknown cavity difference field.

3.2 Finite-Element Discretization

The finite-element method is chosen so that irregularly shaped cavities con-
taining highly inhomogeneous materials can be modeled. Due to the finite
element representations selected, the shapes are limited by bounding sur-
faces which can be approximated by second order polynomial functions. In
addition, the implementation allows varying dielectrics to be placed within
the cavity as long as each finite element of the geometric mesh contains a
homogeneous medium. As with many real cavities, the Q of the systems
modeled, as well as measured, in this investigation are in many cases rather
large. As has often been encountered in the three-dimensional finite-element
modeling of electromagnetic systems, spurious modes may result from the
choice of basis functions and their numerical implementation [31]. These are
simply artifacts of the numerical implementation and are non-physical. To
overcome these problems, this investigation utilized the mixed-order elements
of Crowley [32]. These are-similar in form to the edge-based functions used
by others but, as implemented here, are nodal-based.

We begin by testing (22) with a set of testing, or weighting, functions, as
vet unspecified. to obtain the weak form of the vector wave equation.

/// ]).[VX—VX_\H—;Ik.lﬁ%d‘/=0:vp (32)
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The index on the set of independent weighting functions varies as p =
1,2, ... Npgar. Negag is the number of unknowns in the finite-element prob-
lem. AH is the desired field quantity for which we wish to find an approx-
imate solution. It is a function of the unknown magnetic current along the
slot, [, (z). Using Green’s theorem (32) can be rewritten as

// vV xT,) ( VXAH)*u,kZTp-z_\ﬁdV

//T n< VXAH>d5=0,Vp (33)

The unit normal which points out of the cavity volume, V¢, is 7.

A major contributor to the reduction of Q in most cavities is wall loss
which must be included in our model. For a good, but not perfect, conductor
we substitute the expression for the total field. the vector form of (12), into
(20) and use Maxwell's equation from Ampere’s law to find:

// (VxT,) (VXAH)-—/.LT/CZTP-A—H—dV

+ // Tp - frc X Toy X jue,Z;AHAS

- / / T, fie X o X jweoZoH dS (34)
+ / / T, A X jwe, BT dS, p (35)
ge

Note that in the case of perfectly conducting walls, the surface impedance
approaches zero, Z, = 0, and we obtain (33).

Now we address the implementation of the finite-element method used to
compute the solution. We wish to find an approximation to AH. call it AH.
Discretizing the domain into finite elements. where the elements are assumed
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to be homogeneous, (35) becomes

A

'c(cm l .o _ — N -
S= /// (VxT,)- (Vx AF) — 0, k2T, - AHHAV
e=1 Er. e .
+ // Tp “Re X Ty X jweonﬁL\_ﬁdS
-
Ivclz:vn
=> |- //T,,-ﬁc X Ty X JurtoZoH dS
c=1 (5"
+ // T, X jweOEHSdS , Vp (36)
S

The finite element discretization of Crowley is used here. The finite ele-
ments are hexahedral, with the vector basis being a set of fifty-four different
polynomial functions which, for each scalar direction, utilize a set of eigh-
teen independent shape functions; that is, there are V., = 18 unknowns per
component for each finite element subdomain. In compact matrix notation
(36) on a term-by-term basis becomes

N,

clem l 5 7
Z {6__ [G-’\/[Ic] — #Tck:; [Gj\/jge] + ji.b'ﬁngc [Gl‘\/[k}:{ {HA}
=1 re

.
Netem

= Z {j‘;‘-"Zsc {g1e} + jweo {92e}} . (37)

Note that the boundary terms cancel for internal elemental surfaces so that
the elemental matrices, [GMs.], {gi.}. and {go.} must only be evaluated
for elements bordering a conductor. The terms {g;.} and {g2.} are vectors
computed from the half-space fields due to the slot magnetic currents, I,,.
The elemental integrations are performed use Gauss-Legendre quadrature.
For a swept-frequency response calculation, the elemental assemblies for
([GMy.), [GM..], and [GM;,] are done once; the global matrix at each frequen-
cy is reconstructed by updating the multipliers: and finally the right-hand
side terms which are explicitly a function of frequency, are re-computed. This
saves considerable computational time. Thus, given a presumed slot current
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. . —HS —HS : L
distribution, which produces A =~ and £ . we can solve to find the interior
cavity fields.

3.3 Hybrid Solution

The hybrid moment method/finite-element method solution to find the mag-
netic current along the cavity-backed slot is now presented. Equations (26)
and (37) together are a set of algebraic equations to solve for the unknown
slot magnetic currents and cavity difference fields. These can be solved either
simultaneously or in a two-step process. We have chosen to utilize the latter
to avoid the problems of having to deal with a sparse matrix having a block
dense portion.

In the two-step process, the cavity is excited at each frequency by the
half-space fields Ny, times; that is, we compute E" and B due to each
MOM slot basis function and determine AH,. While the values from the
FEM solution are available we compute a column of the [CC] matrix by
testing the fields resulting from each MOM basis excitation. Solving the
FEM problem Ny, times yields the complete Ny, x Ny matrix and the
MOM problem solution can proceed. As implemented here, after the solution
is completed, the [CC] matrix is stored on disk. It is then read and the MOM
problem is solved via (26). At this juncture, we must also save the FEM and
half-space fields (AH and H¥5), due to excitation by each MOM beasis, at the
measurement point within the cavity. If the fields everywhere in the interior
region are desired, it is necessary to store the half-space and difference fields
at every node within the finite-element mesh for each excitation. In this
study, we are interested in comparison to laboratory measurements performed
at a single probe location; thus. only the fields at the measurement point are
required.

Once the vector of magnetic current amplitudes, { A}, is known, the mag-
netic current distribution along the slot is determined. The fields scattered
by the cavity-backed aperture can then be computed by substituting {A}
into (23) and then using (9). The total cavity fields. in local coordinates at
the measurement point, are then computed as:

‘\slal

Hf = Ad(HES +0H,,) - (38)

n=1
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Hy = t>: An (Hfjs +AH,) (39)
n=|
g = Z\j A, (HHS + Aﬁu"> (40)

n=1

Note that a transformation of these fields must be done to find the fields in
the global Cartesian coordinate system. The electric field can be calculated
from the computed values of F7° and AH. Given the finite element within
the mesh and the position within that subdomain, we numerically take the
curl of the magnetic field to find the electric field.

It should be noted that the computation of [CC] in (26) is dependent
on the radius parameter p,. It would seem that the antenna radius would
greatly affect the energy stored in the vicinity of the slot; however, we wish to
determine AH, {p,, z) rather than the half-space field in the non-local region.
In order to cancel the p, dependence of the local transmission line terms it
was necessarv to evaluate the half-space field in the + region at p = q, the
equivalent antenna radius. The question then becomes ”"what is the depen-
dence of the z-component of the difference field near the conducting wall?”
We know that for a perfectly conducting wall the total tangential magnetic
field doubles. From resonant cavity theory we know that the field in this
region is relatively slowly varying. Rigorously satisfying the constraints in
(1), we know that p, should be greater than the slot cross-sectional dimen-
sion. However, since the half-space term evaluated at the equivalent radius
accounts for most of the slot physics and the difference field does not vary
radically in the region near the slot, we will evaluate the difference term on
the slot wall, z = +d/2. The following results will show this to be a good

choice for p,.
S X Q =0 (
]

4 Results

A large number of experiments were performed to verify that the numerical
slot-cavity model would produce accurate results. For the sake of brevity,
we present some select cases. Full results can be found in [30]. All measure-
ments were done in the anechoic chamber located in the Electromagnetics
Laboratory at New Mexico State University. The measurements presented
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i Slot Width } Depth lslot ‘ luff

! | .0017" ] .1257 2.0047 | 2.1507
[1 0107 1257 1.995” | 2.020”
I11 1257 1257 1.996” | 2.000"
v 00217 | 257 1.995" | 2.1107
4 .010” 257 2.0057 | 2.060"
VI 0016" | .507 2.0037 | 2.180"

 VII | .0095" | .507 2.008" | 2.045”

Table 2: Measured aluminum slot dimensions

Cavity | Width | Height Depth (d,)
1 3.4”7 L7 1.9957
2 3.47 L.77 2.6377
3 3.47 1.7 3.2957
4 3.47 1.77 4.205”

Table 3: Cavity dimensions

were done with electric field probes fabricated and calibrated in the Electro-
magnetics Laboratory. The details of the measurement setup can be found
in [30]. Four different cavities and seven different slots were constructed so
that the effects of slot width and depth as well as cavity size could be exam-
ined. All the slots and cavities were constructed from aluminum. Tables 2
and 3 below give the dimensions of each of the seven slots and four cavities
used.  The slots were mounted to the front of the cavity test fixture as
shown in Figure 5. For all cases, the incident electric field is polarized per-
pendicular to the slot. Due to the limited size of the cavity and to preclude
undesired loading of the cavity only one probe was used. A measured value
of ¢ = 2.6 x 10 for the aluminum conductivity was used for all the computer
models. In all cases an effective slot length, as determined by comparison to
half-space measurements, was used to compensate for the loading produced
by imperfect short circuits at the slot ends. :
The first set of results are for cavity 1. The first cavity resonant frequency
(T Epi) is well above the slot resonance for cavity 1. The computer model
used a 28 element finite element mesh with 21 moment-method basis func-
tions for the slot. Figures 6 - 7 show the coupling for cavity 1, slots I, II,
[II, and VII respectively. The reader should note that the following charac-
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teristics in each of the plots: 1) cavity resonance frequency 2) slot resonance
frequency, 3) cavity resonance Q, 4} slot resonance Q, and 3) peak coupling.
In each of the cases, the computer model correctly tracks the experimental
results. As expected the Q decreases with increasing slot width. The peak
coupling also increases with increasing slot width. Increasing the slot depth
decreases the coupling due to wall losses. It is interesting to note that the
slot greatly affects the coupling at the resonant frequency of the cavity even
when the slot and cavity frequencies are widely spaced.

The second set of results are for cavity 2. The slot and cavity resonant
frequencies are nearly coincident for this case. The computer model used
a 35 element finite element mesh with 21 moment-method basis functions
for the slot. Figures 8 and 9 show the coupling for cavity 2, slots [ and II
respectively. In both cases, the computer model is calculating the complex
interaction of the slot and cavity. The proximity in frequency of the two
resonances reduces the @ of the system as a whole.

The third set of results are for cavity 4. The slot resonant frequency lies
between the first two cavity resonant frequencies. The computer model used
a 63 element finite element mesh with 21 moment-method basis functions
for the slot. Figures 10 - 12 show the coupling for cavity 4, slots 1, 2, and
7 respectively. Again, the computer model is able to predict the coupling
accurately.

We now consider the effects of loading the cavity with dielectrics and
conductors. The first combination is for cavity 1 partially filled with sty-
rofoam with slot VII as given in Figure 13. The calculated and measured
curves shown in Figure 14 display excellent agreement. The measured cavity
resonance decreases from 3.435 to 3.415 GHz. Ignoring losses, a volumet-
ric mixing model results in ¢..;; = 1.018. This results in a cavity resonant
frequency decrease of 29.5 MHz, from 3.4465 to 3.418 GHz. The numerical
model with 42 elements and 21 slot moment method basis functions predicts
a decrease of 31.5 MHz. '

The second combination is for cavity 1 partially filled with styrofoam with
slot VII as given in Figure 15. The calculated and measured curves shown
in Figure 16 display excellent agreement. The measured cavity resonance
decreases from 3.435 to 3.417 GHz. Ignoring losses. a volumetric mixing
model results in ¢..5f = 1.017. This results in a cavity resonant frequency

> decrease of 28.5 MHz, from 3.4465 to 3.418 GHz. The numerical model with

42 elements and 21 slot moment method basis functions predicts a decrease
of 27.5 MHz.
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For each of the last two results, we were able to use perturbation theory
to predict the cavity resonant frequency shift since the slot was narrow and
has a large depth so that the cavity fields are not perturbed significantly.

The third combination is cavity | with slot VII having a small teflon
block placed near the front wall (Figure 17). The published value used in
the computer model was ¢, = 2.1 — 70.0003. The frequency response curves
calculated by the computer model again agree well with the measured results
(Figure 18). The measured peak shifted from 3.435 GHz in the air-filled
cavity to 3.345 GHz when the dielectric slab was inserted, a downward shift
of 90 MHz. Perturbation theory can be used to predict the resonant frequency

shift assuming that the dielectric occlusion in the cavity is small. The shift
is given as

AW
Af = frcsair—f/v_ : (41)

where AW is the additional energy stored in the cavity with the dielectric in
place, and IV is the energy stored without the dielectric. The shift computed
with perturbation theory is 35.8 MHz. The computer model (84 elements and
21 slot moment method basis functions) predicted a resonant frequency of
3.408 GHz which is close agreement with the shift predicted by perturbation
theory. The larger measured resonant frequency shift may be indicative of
an error in the measured location of the dielectric slab.

The final result is for cavity 2 with slot VII having a metal block set on
the lower surface of the cavity (Figure 19). The block was not held in place

“with screws or bolts. It was set in the cavity so that a small gap between the

block and rear wall of the cavity was created. The measured and calculated
curves are shown in Figure 20. The computer model used 100 elements and
21 slot moment method basis functions. Two main features of the response
are observed. First, there is a dramatic decrease in the cavity resonant
frequency. The cavity resonant frequency shifts downward nearly 800 MHz
to 2 GHz when the metal block is introduced. A second resonant peak of the
loaded cavity is observed near 3.5 GHz. A second cavity resonance is seen
near 3.5 GHz. The coupling in the vicinity of the slot resonant frequency.
approximately 2.8 GHz, is perturbed by the presence of the conducting block.

Although not as close as previous examples, the agreement between the
computed and experimental results is still adequate for practical situations.
Most importantly the hybrid MOM/FEM model predicts the general vicini-
ty of the two cavity peaks. These are the points in the frequency spectrum
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where maximum coupling occurs. Thus in terms of determining system sus-
ceptibility, the numerical model performs well. Furthermore, the computed
curve displays trends similar to those measured in the laboratory near the
slot peak.

Reasons for the weaker relationship between modeled and measured data
are difficult to determine in this last case. Imprecise knowledge of the dimen-
sions of the cavity, irregularities in the dimensions of the metal block, and
uncertainties in its location may have all contributed to the discrepancies.

5 Conclusions

The primary focus of this research was the formulation and numerical so-
lution of slot/cavity problems incorporating realistic apertures. This was
accomplished by modification of the antenna/local transmission-line model
of Warne and Chen, which represents the physical attributes of an actual
seam by incorporating slot depth and losses, and applying it to arbitrarily-
shaped cavity-backed apertures. A hybrid MOM/FEM technique was applied
to solve the two-region problem utilizing standard piecewise-sinusoidal basis
functions for the moment method implementation and mixed-order, covari-
ant projection finite elements. The hybrid model was used successfully to
compute the electromagnetic coupling into a variety of slot/cavity geometric
configurations with varying dielectric inhomogeneities.

A series of numerical and laboratory experiments for slot/cavity con-
figurations with right-rectangular geometries was performed, with excellent
agreement between the experimental data and numerical computations. In-
consistencies were mainly attributed to loss mechanisms not represented in
the hybrid MOM/FEM slot/cavity model, caused by uncertainties in the me-
chanical configuration. However. the model successfully indicated the relative
position of slot and cavity resonances, demonstrating the interaction between
the slot and the highly reactive cavity load, and the resulting enhancement
in coupling. The cavity fields increased with increasing slot width and/or
decreased slot depth. Frequency shifts measured when the right-rectangular
cavities were partially loaded with dielectric materials were predicted with
the hybrid MOM/FEM model, and found to be in good agreement with the
results of a perturbational analysis.

The hybrid technique developed here urtilizes an FEM solution of the
interior cavity problem and allows for arbitrarily-shaped geometries. An ir-
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regular cavity was assembled and coupling measurements performed. The
hybrid MOM/FEM model predicted the nominal frequencies at which high
coupling levels occurred. Although wall losses were included, the hybrid
MOM/FEM model somewhat overestimated the peak coupling values, thus
providing a conservative estimate of the maximum field within the cavity.
That is, the measured flelds in the cavity were smaller. the internal elec-
tromagnetic environment was less severe than that predicted by the hybrid
MOM/FEM model.

The mixed-order, covariant-projection finite elements described by Crow-
ley allow curvilinear geometries to be accurately modeled with a minimum
number of elements. The use of the slot model of Warne and Chen avoids
the need for using a fine discretization in the slot region further adding to
the efficiency of the method.

An additional advantage of the hybrid numerical model used here is that
in the course of computing the coupling, the fields everywhere within the
cavity can be determined. For a given configuration. this ensures that the
maximum field and its location are determined. This is often difficult to
accomplish in a measurement program. Furthermore, the numerical analysis
allows determination of the energy distribution within the system.

To enhance the capabilities of the slot/cavity formulation presented here,
realism should be added to the exterior problem and terminated wires as well
as complex loads should be included within the interior cavity region.
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Figure 8: Coupling versus frequency for cavity 2/aluminum slot I
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Figure 15: Styrofoam on front wall
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Figure 17: Teflon block near front wall
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Figure 18: Cavity 1/aluminum slot VII (teflon block near front wall)

39




Figure 19: Metal block on bottom wall
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Figure 20: Cavity 2/aluminum slot VII (metal block on front wall)
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