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Abstract

The strengths of ceramic ﬁbcrs have been observed to increase with decreasing
fiber diameter and length. The traditional single-modal Weibull distribution function can
only take into account one type of flaw, which makes it inappropriate to characterize the
strength dependence of both the diameter and the length since ceramic fibers usually have
both volume and surface flaws which affect the strength dependence in different ways.
Although the bi-modal Weibull distribution can be used to characterize both volume and
surface flaws, the mathematical difﬁcuity in its application makes it undesirable. In this
paper, the factors affecting fiber strength are analyzed in terms of fracture mechanics and
flaw formation. A modified Weibull distribution function is proposed to characterize

both the diameter dependence and the length dependence of ceramic fibers.
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1. Introduction

- Ceramic fibers and whiskers have been increasingly used as reinforcements for
advanced composite materials [1-4]. The mechanical properties of these reinforcements
significantly affect the strength of the composite materials. In order to make full use of
the reinforcing potential of ceramic fibers in composite design, it is essential to
understand and accurately characterize their mechanical properties. Brittle fractures have
been observed in most advanced ceramic fibers under tensile stress. It is a well known
fact that the strengths of ceramic fibers are size dependent [S]. As the diameter or gauge
length decreases, the strength of ceramic fibers increases [6-8]. In addition, experimental
strengths of brittle ceramic fibers display a range of values for a given configuration.

The traditional single-modal Weibull distribution function [9] has been widely
used to characterize the dependence of the brittle-fiber st;ength on gauge length [10 - 13].
However, brittle ceramic fibers usually have both volume and surface flaws which affect
the size dependence of fiber strength in different ways. Therefore, it is inappropriate to
characterize the strength dependence of both the diameter and the length using the
traditional single-modal Weibull distribution. Modified bi-modal Weibull distributions
can be used to characterize the strength dependence of ceramic fibers on both diameter
and gauge length when two distinct flaw populations are presumed to exist. However, it
is very difficult to determine the four parameters of the bi-modal Weibull distribution
from the experimental data [1, 10, 14]. Since the bi-modal Weibull distribution cannot be
integrated, repeated numerical integration is needed to determine the four parameters that
fit the experimental data best by trial and error, which makes it unsuitable for practical
application. In addition to its complexity and difficulty, the bi-modal Weibull

distribution also provides little insight into the actual failure mechanisms which act on the

ceramic fibers.




This paper analyzes several proposed mechanisms which could affect the fiber
strength. A modified Weibull distribution is proposed to characterize the strength
dependence of ceramic fibers on both diameter and gauge length. Comparison with
experimental data demonstrates the superiority of the proposed modified Weibull

distribution.
2. Strength Affecting Factors

There are three factors which affect the fiber strength. The first one is fiber
volume, to which the probability of encountering a critical-size volume flaw is assumed
to be proportional in the traditional single-modal Weibull distribution; the second factor
is statistical fracture mechanics; and the third factor is the effect of fiber diameter on the
volume flaw density. The first factor has been well characterized by the traditional
single-modal Weibull distribution, and therefore will not be discussed here. The Second

and the third factors are discussed in the following sections.

2.1  Statistical fracture strength
Consider a fiber of radius b containing a central penny-shaped crack of radius a.
The crack is in a plane normal to the longitudinal axis. Under a tensile force F, the stress
intensity factor can be expressed as [15]:
Fva

X, =[%(1+0.Sq—0.625q2)+0.268q3]1/1—QW' @

where ¢ = a/b, is the ratio of crack radius to fiber radius, K is the stress intensity factor.

Substituting F = 7b?¢c into Eq. 1 and rearranging yields:
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Assuming the fracture toughness of the fiber is X}, the fiber strength can be derived from
Eq. 2 as:

O, = chG(Q)b_vz @

It can be seen from Eq. 4 that for a fixed crack radius to fiber radius ratio, g, the
fiber strength increases with decreasing fiber radius. However, calculations show that,
for a fixed crack radius, the fiber strength decreases with decreasing fiber radius. In the
ceramic fibers, the probability of encountering a crack of -a certain size is statistical in
nature. The fiber strength is determined by the largest crack existing in the fiber.

To examine the effect of statistical fracture mechénics on fiber strength, first we
will assume the probability of encountering a crack of size a per unit fiber volume can be
characterized by a function p(a) disregarding the fiber radius, i.e. the crack size
distribution is not affected by the fiber radius. Of course, this is only an assumption.
However, it is necessary to make this assumption so that we can isolate and investigate
the effect of statistical fracture mechanics without the complication of crack density
variation with fiber diameter, which will be discussed in a later section. The probability

that a is the largest crack radius size in the fiber, P(a), can be expressed as:

P(a)=p(a)1- [ p(a)da ®

The expectation of largest crack radius (i.e. the value of @ at which P(a) has a

maximum) can be obtained by setting




dP(a) _,
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and solving it for @. The expectation of ceramic fiber strength can be calculated by
substituting g = @/b into Eq. 4.

To calculate fiber strength, first we need to find a function pfa), which satisfies
three requirements of "real" crack size distributions. First, p(a) has to increase with

decreasing a; Second, p(a) has to approach 0 as a approaches eo; Third, it has to

satisfy the normalization condition: I:p(a)da =1. Assume p(a) takes the form
p(a)=2e™ )

where A can be considered as a crack size distribution parameter. This function satisfies
all three requirements mentioned above, and can describe a wide range of crack size
distributions with different A values (see Fig. 1). 7 can be derived following the

procedures mentioned above as

c7=———1n—i—(1+e'4”) . @)

The above statistical fracture strength analysis shows that the fiber strength is
affected not only by the fiber radius b but also by the statistical crack size distribution

parameter A.

2.2. Effects of fiber diameter on defects population

In the analysis of the last section, the crack size density distribution is assumed to
be unaffected by scale, but this may be a poor assumption in reality. During the
production of ceramic fibers, cracks form to release global or local stress and to lower
the system energy. Undesirable internal stresses generated during fiber processing are

usually caused by thermal stress, local chemical variations, or structural inhomogeneity.




As the fiber diameter decreases, it is likely that the fiber will be subjected to lower
processing stresses because thermal, chemical and mechanical equilibrium can be
achieved more easily. Since stress is the driving force for crack formation, less crack per
unit volume of fiber is proposed for fibers with smaller diameter. On the other hand, the
fiber surface area to volume ratio increases with decreasing fiber diameter, and therefore,
the surface flaws per unit volume of fiber may increase as a result of abrasive contact

damage following the synthesis.

3. Characterization of Ceramic Fiber Strength

As discussed in the strength anaiysis and the introduction, it is inadequate to
characterize the diameter dependence and the gauge-length dependence of experimental
ceramic fiber strength data with the traditional single-modal Weibull distribution
function, and a bi-modal Weibull distribution is undesirable because of its complexity
and mathematical difficulty. Therefore, to adequately characterize the size dependence of
brittle ceramic fibers, one has to find a function which can take into account not only the
statistical nature of the fiber strength but also the three strength affecting factors
discussed in the strength analysis. This may be accomplished by incorporating the
strength affecting factors into the Weibull distribution. To do this, let us examine the

general form of the Weibull distribution:

F(0)=1-exp(-0a,0B,V) ©

where F(0o) is the probability that a brittle fiber will fail under stress o, o, and 8, are
Weibull distribution parameters associated with fiber volume, and V is the fiber volume
~ under stress. It can be seen from Eq. 9 that the probability of fiber failure increases with

increasing fiber volume, V. Fiber volume is used because it is assumed in the Weibull

distribution that the probability of encountering a critical size flaw is proportional to the




fiber volume. However, it is the probability of encountering a critical size flaw that
determines fiber failure. Therefore, a more general form of Weibull distribution is
proposed that uses the probability of encountering a critical size defect, P, instead of the

fiber volume. Thus, we can write the probability-based Weibull distribution as

F(6)=1-exp(-a,0* P) (10)

where ap and Bp are Weibull distribution parameters related to P.
P is proportional to the fiber length L since the flaw density is not affected by
fiber length. However, P may not be proportional to the fiber cross-section area nd?/4.

Let us assume
P=CLd* 1)

where C and e’ are constants and d is the fiber diameter. Substituting Eq. 11 into Eq. 10

yields

F(o)=1- exp(—CaPGﬂ 'Ld") _ (12)

Egs. 4 and 8 account for fiber strength that is affected by fracture mechanics and
the crack size distribution parameter A. Therefore, we can also incorporate the results of
Egs 4 and 8 into Eq. 12. Of the two Weibull distribution parameters, ¢p determines the
average fiber strength and S determines the fiber strength scattering. Since Eqg. 4 is only
related to average fiber strength, we can incorporate Eq. 4 into Eq. 12 by multiplying o,

with another parameter o :

F(0)=1-exp(-Ca,,,6" Ld" ) (13)




where o5 can be written as
o, =[VZK,G(@)d ] (14)

Kj and d are as defined before, 7 is defined by Eq. 8 and G(7) is defined by Eq. 3.

Substituting Eq. 14 into Eq. 13 and rearranging it yield

F(o)=1- exp{-—a[G(? )]—'3 o® Ld‘} (15)

where = fp and

a=Ca,2PPK;? (16)

e=¢e+p/2 17

The average fiber strength can be obtained from Eq. 15 as [16]:

G=AG(G@)L"d™" (18)
where
m=1/B | (19)
n=-—elP 20)
A= a“’”r(l + l} (1)
B




There are four unknown constant in Eq. 18: A, A, m and n. A is inexplicitly
present because it is used to calculate g . The four constants can be obtained by fitting
Eq. 18 into experimental data using the least square method. The parameters in the
modified Weibull distribution (Eq. 15) can be calculated from the four constants using
Egs. 19-21.

Although Eqgs. 15 and 18 are much easier to use in comparison with the bi-modal

Weibull distribution, it is still cambersome to calculate its parameters from experimental

data. To further simplify the Eqs. 15 and 18, let us approximate G(g) as follows

G(g)= Bd* (22)

where B and h’ are constants. We choose an exponent function to approximate G(g) ‘

because it yieldé a very simple form of modified Weibull distribution. The validity of
this approximation‘ is shown in Fig. 2, in which G(g) is approximated as
G(7) =1.0944%%¢ for A =0.5. It will also be shown later (Fig. 3) that the form of Eq. 24
resulting from this approximation fits the experimental fiber strength data well.

Substituting Eq. 22 into Eq. 15 and rearranging it yield:

F(0)=1-exp(-a’c’Ld") 23)

where o’ =oB™? and h=e—Bh’. Now, the average fiber strength as a function of
fiber diameter and length can be derived from Eq. 23 as [16]:

&= a'-lfﬂr(1+713-]L-*/ﬂd-W = KL™d™ 4)

where K, m’ and n” are constants.
Eg. 24 is identical to the empirical equations obtained by Bayer and Cooper {17,

18], which explains why their empirical equations fit into experimental data well.




However, there is a major difference between the modified Weibull distribution function
derived here and the empirical equations of Bayer and Cooper. Their empirical equations
can only calculate the average fiber strength while the modified Weibull distribution can
characterize both the fiber strength and its statistical nature.

The values of K, m' and n' in Eq. 24 can be easily obtained by fitting into
experimental data, and the parameters for the modified Weibull distribution can be
calculated as

B= L, 25)
m
h=pn’ (26)

and
;11 1
o = [-—I‘(H _ﬂ] | 27N

The modified Weibull distribution (Eqgs. 23 and 24) can be used to characterize
strengths of both unpolished and polished ceramic fibers. For example, for surface
unpolished and polished A type (axis orientation: <1120> and <1010>) sapphire fibers
[17, 18], T=720L"%d "% and & =1019L"%d™*% are obtained from the experimental
data, respectively. The parameters for the modified Weibull distribution can be
calculated as 8 = 2.564, h =~ 1.436 and &'~ 3.48x10-8 for unpolished fibers, and 8 =
2.564, h=1.436 and o’ ~ 3.48x108 for polished fibers.

It should be pointed out that Eqs. 23 and 24 are only approximations to Egs. 15
and 18. For accurate characterization of ceramic fiber strength, Eqs. 15 and 18 should be
used. However, in most cases, Egs. 23 and 24 are quite good approximations. For

example, both Egs. 18 and 24 were used to fit the experimental data for unpolished

10




alumina fiber [19] as shown in Fig. 3. It can be seen that both equations fit the data well,

which proves the validity of the approximation in Eq. 22.

Conclusions

The traditional volume-based single-modal Weibull distribution is inadequate to
characterize both diameter and length dependence of ceramic fiber strength. The factors
affecting the strength of ceramic fibers include fiber volume, statistical fracture
mechanics and a crack density variation with fiber diameter. These factors are
incorporated into a modified Weibull distribution function, which can be used to
statistically characterize the size dependence of strength for both polished and
unpolished ceramic fibers. The modified Weibull distribution function shows good fit

with the experimental strength data of ceramic fibers.
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Fig. 1

Fig. 2

Fig. 3

Caption

A wide range of crack size distribution functions ( p(a)= Ae™*) can be created

with different A values.

Approximation of G(7) with G(7) =1.094d%*¢ for 1=0.5.

The experimental strength data for alumina fibers can be fitted pretty well with

both Eq. 18 (with parameters 4 =0.5, AL™ = 41824 and n =0.9176) and Eq. 24

(G =5431547""*). The two equations have little difference in this case.
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