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~ ABSTRACT

A mathematical procedure for recovering from image analysis the three
dimensional non-symmetric fiber-orientation distribution in short-fiber composites is
proposed. Microphotographs from two orthogonal faces of a composite sample are
needed to determine the three dimensional fiber orientation.. A simple weighting
function is derived to take into account the probability of intercepting fibers at varying
inclination angles. The present procedure improves the previous works of other
researchers in the following two aspects. First, it can obtain the single-angle fiber-
orientation distribution from one micrograph in reference to the normal of the
- photographed surface. This distribution is often needed in predicting the mechanical and
physical properties of short-fiber composites in this direction. Second, no symmetry in

fiber-orientation distribution is assumed in the determination of the three dimensional

fiber-orientation, which makes the present procedure more practical and versatile.
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1. INTRODUCTION

Short-fiber reinforced composites have the advantages of easy adaptability to
conventional manufacturing techniques such as powder metallurgy, casting, molding,
drawing, extrusions, machining and welding [1 - 5]. This results in a lower part
fabrication cost for short-fiber composites than for long-fiber composites [6]. These
advantages have made the short-fiber composites increasingly popular in recent years [7,
8]. With the increasing applications of short-fiber composites comes the need to
understand and predict their mechanical and thermal properties, which strongly depend
on fiber orientation, length and content [9 - 12]. The fiber orientation is strongly
influenced by the flow process during the part fabrication [12, 13]. Short-fibers usually
align up in the flow direction to a varying extent so that the intended random fiber
orientation is seldom obtained [14]. The non-random fiber orientation leads to
anisotropic mechanical and thermal properties of short-fiber composites. In order to
assess the composite properties such as strength, Young's modulus and thermal expansion
_coefficient, it is essential to quantitatively characterize fiber-orientation distribution. [13-
15].

Several techniques such as the direct image measurement using an image analyzer
[9, 16] and optical diffraction [13, 14] have been attempted to characterize fiber
orientation in two or three dimensions. The characterization of fiber orientation in two
dimensions is straightforward and has been well studied [14, 15, 17, 18]‘. However, the
characterization of fiber orientation in three dimensions is not as straightforward as it

might appear [13]. Microphotographs from two orthogonal faces of a composite sample

are needed, and recovering the three dimensional fiber-orientation distribution from the
two microphotographs is not trivial, and has not been well studied. ’
Typically, two different methods are used to describe the three dimensional fiber

orientation. One method uses the function f{6, ¢), where 8 and ¢ are the in-plane and
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out-of-plane angle, respectively [9, 13]. This function enables us to assess the anisotropy
of composite properties in any direction. Fischer and Eyerer [9] attempted to characterize
the three dimensional fiber orientation using a computer based image analysis. They
assumed that a fiber-orientation distribution symmetry exists in the cross-section
investigated, which may not be true in most cases. The symmetry exists only when the
composite specimen is cut in a few particular orientations, except when the short fibers
are perfectly randomly-oriented. They also used a complicated weighting function [9, 11]
to correct the inclination-dependent probability of intercepting a fiber by the cross-section -
investigated.

The other method to characterize the fiber orientation is to use a single angle
function f{ y), where y is the angle between a fiber and the direction in which the
composite properties is to be assessed (the normal direction of the photographed cross-
section). This function is needed to assess the composite properties in the direction
normal to the photographed cross-section. Jain and Wetherhold [19] proposed a
mathematical ﬁrocedure to recover f{y) from f(6, ¢). Gonzalez et al [13] proposed
another mathematical procedure to recover f{y} from the planar characterization of two
orthogonal sections. Both works assumed a symmetry in the fiber-orientation
distribution, which makes them not applicable to non-symmetric cases. In addition, there
is no need to recover f(y) from f( 6, ¢) or perform the planar characterization of two
orthogonal sections. As demonstrated later in the present work, f{y) can be obtained
directly from the characterization of one planar cross-section.

The objective of this paper is to develop a procedure for obtaining f{y) directly
from the characterization of one planar cross-section, and té derive a procedure for

recovering the three dimensional non-symmetric fiber-orientation distribution from the

micrographs of two planar orthogonal sections.
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2. SINGLE-ANGLE ORIENTATION FUNCTION fy

The single-angle fiber-orientation distribution function f(y) can be directly
obtained from the micrograph of one planar cross-section, where 0 < yw < wn/2 is the
inclination angle of a fiber toward the normal of the cross-section. The micrograph
provides images of fiber cross-section as cut by the planar cross-section. The inclination
angle y of each fiber can be obtained from its cross-section image, and the fiber-

orientation density n'y), can be calculated as

n(w) = n,(v)s(v) - | M

where n,(y ) is the apparent fiber-orientation density as counted from the planar
micrograph and g(y ) is a weighting functioh which is the inverse of the probability of
intercepting a fiber with an inclination angle ¥ by the planar cross-section. The single-
angle fiber-orientation distribution function f{y} can be calculated by normalizing n{ y) :

n(y)
f == )
W= T iy

In order to obtain n{y ) needed for calculating f{y) , the inclination angle y and the
weighting function g(y) have to be obtained first. The procedures for obtaining v, g(y)
and n{y) are described below.

2.1  Calculation of the inclination angle y

When a circular cylindrical fiber is cut by a planar section, an elliptical fiber
cross-section is resulted (see Fig. 1). The inclination angle y of the fiber can be

calculated as:

- d
V= arccos( p ) 3)
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where b and 4 are the major and minor axes of the ellipse, respectively. d also equals to
the fiber diameter. However, if a fiber is cut through its end or if a fiber has an
inclination angle y = /2, the fiber cross-section will show only a partial ellipse, from
which d and b may not be able to be measured directly. The possible fiber cross-section
shapes are shown in Fig. 2. Using the dimensional data from the partial ellipse as shown
in Fig. 2, d and b can be calculated from the ellipse equation x2/(d/2)” +y*/(6/2)" =1,
and y can be subsequently calculated using Eq. 3. The equations as such derived for

calculating y for varying fiber cross-section shapes are as follows:

Fig. 2a:
/ 2 2 2
Y= arccos(—e—z—-e—l—/—] @
2c
Fig. 2b:
d
V= arccos(—-) : ®
2c
Fig. 2c:
2(2e? - e - &2
Y = arccos \/ ( 2401 3) _ ©)
Fig. 2d:
2 _ 2
y= arccos(—g———e—} )]
2c
Fig. 2e:
.4
=2 8
y=" ®
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2.2 Derivation of weighting function g(y)
The probability, p( y) , of a fiber being intercepted by a x-y cutting plane (see Fig.

1) is proportional to h+m, the projected length of the fiber toward z axis:
p(y)=K(h+m) )

where K is a constant and h+m can be calculated from the geometry (Fig. 1) as

h+m=lcosy+dsiny 10)
where [ is the fiber length and d the fiber diameter. Substituting Eq. 10 into Eq. 9 yields

p(w)=K(Icosy +dsin y) an

The weighting function g ) can be defined as

p(y=m/2) _ r
p(y) rcosy +siny

g(v)= (12)
where r=1I/d is the fiber aspect ratio. This weighting function is much more

straightforward and simpler than what was proposed by previous researchers [11]

2.3  Calculation of n(y)
Knowing the fiber inclination angle y and weighting function g( v ), we are ready

to calculate fiber-orientation density n( y). Substituting Eq. 12 into Eq. 1 yields

rn,(¥)
rcosy +siny

n(y)= (13)

n(y) is usually presented by a histogram [14, 15, 17]. Due to the statistical nature of the

fiber-orientation distribution, the histogram is usually rough [14] and difficult to fit by a
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smooth function n{y ). In order to overcome this difficulty, we propose to plot the

measured accumulative fiber-orientation data

n n,(w;)r
N(y)= £ vy 14
( ) ,g,‘rcosv/ﬁsinw‘. for all v; (14)

as a function of ¥, and then fit the data with a polynomial function:

k
N(y)=2 ay’ 15)
i=0
where n is the total number of fibers with an inclination angle y; < y, ny(y;) is the
number of fibers with an inclination angle y; as determined from the micrograph, and k

is the highest power in the polynomial function and is fited for a given regression. By

definition, n{ ) can be derived from N(y) as

n(y)== ("') =S iy 16)

i=1

3. Three Dimensional Fiber-orientation Function

Most workers {9, 13, 16, 19] have used the function f{6, ¢) to describe the three
dimensional fiber-orientation distribution. We adopt here the function f{6, y) [18]
instead of f{6, ¢) for mathematical simplicity in its derivation and application. There is
no substantial difference between these two functions since y and ¢ are related as y + ¢
= 7/2 (see Fig. 3). As did other workers[13, 19], we assume that f{(8, y) can be

expressed as

16, v) =f6)(y) a7n

with a normalizing condition as
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[[7(6.wx6ay =" r(6)6[™ f(w)iy =1 18)

050<2x

0sy<nf2
where f(y) is already calculated by Eq. 2. With f(y) known, the task of obtaining
f(6, y) is reduced to obtaining f(8). Since f{y) is already normalized (Eq. 2), the
normalizing condition in Eq. 18 can be reduced to:

[ r(ou=1 19

However, it is not straight forward to determine f{6) without assuming any
symmetry for the fiber-orientation distribution. It can be seen from Fig. 4 that the shapes
and orientations of the fiber cross-sections do not differentiate a fiber with an orientation
(6, y) from a fiber with an orientation (6 + &, ). Therefore, f{6) can not be determined
from the micrograph of one cross-section of a composite sample, and at least two
micrographs from two orthogonal cross-sections are needed. What can be obtained from
the micrograph of one cross-section (say the cross-section perpendicular to the z axis in

Fig. 3) is

f(8)= f(8)+ f(0 + ) 0<0<x (20)

where f(6) is the apparént fiber-orientation distribution as a function of & and can be

determined from the planar micrograph in the same way as f{y) is determined:

Zgy— __110)
f(6) K;‘ (0)d0 1)

where 7i(0) is the apparent fiber-orientation density distribution as a function of & and

can be determined in the following way. First plot the measured accumulative fiber-

orientation data
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N(6)= ia(e,.) forall 6,<6 22)

i=1
as a function of 8, and then fit the data with a polynomial function:

N(9)= ib,.e‘ (23)

i=0

where # is the total number of fibers with an inclination angle 6 <6, @6)isthe

number of fibers with an orientation §;, and m -is the highest power in the polynomial -
function and is determined during the curve fitting. By definition, 7(6) can be derived
from N(6) as

A(8)=—~ dN(e) zzb o . (e

i=1

Substituting Eq. 24 into Eq. 21 yields

) iib,.e"“
7(8) =—)—:—— 25)
b

It can be seen that f(6) is a (m-1)th order polynomial.
Let us assume that f(6) in Eq. 25 is obtained from the specimen cross-section

perpendicular to z axis. Another set of fiber-orientation functions, f,(w,) and f,(e,)

(see Fig. 3 for the definition of y4 and 6)), can be obtained in the same way as f{y) and

f(6) are obtained. The two sets of fiber-orientation functions obtained from these two

orthogonal cross-sections contain enough information for determining f(6). Assume

that f,(e,) takes a similar form to £(8):
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Z ic,0)"

7,(6,)=— 26)

Zc,n‘

i=1
Then, f ( ) is a (j-1)th order polynomial. Similar to Eq. 20, we also have

7,(6,)=1,(8,)+ £,(6,+ =) 0<g<m @7

The next step is to derive f(8) from the above two sets of functions obtained
from the experimental measurements. Let us assume that f(6) takes the form of a
(m+j-2)th order polynomial:

jtm=2

f(8)= > ub* (28)

Substituting Eq. 28 into Eq. 20 yields

jtm-2

F®)= Yule*+(+n)] 0<O<x (29)
k=0

In order to utilize f,(y/,) and f,(e,) in the determination of f(6), the
relationship between f,(ey) and f{y), f(6) has to be first derived. This can be done
by expressing f,(e,) and fy(ey + 7:) in terms of f{y) and f(6) using the Leibniz rule
for the differentiation of integrals [20]. We have to first find the equivalent domains of
integration. It can be seen from Fig. 5 that an integration domain 6, € (0, 9,) and
v, (0 W,) for f ( ) and f (t//,) where 0y <7/2, is equivalent to € (6,,6,) and
v e(y,,7/2) for f{y) and f(B). It can also be seen from Fig. 5 that 6; is a function of
yand ¥, 62 is a function of yand 6y and y; is afunction of 6y and y. 67, 62 and
W, can be found with a little geometry from Fig. 3

|

10
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9, = arcsin( sV, ) (30a)
sin y
0, = arccos(cot 0, cot 1//) (30b)
and
v, = arccos(sin v, sin 65) (30¢)

The accumulative fiber-orientation function, F, in terms of f (l;/,) and f ( ) within the

above integration domain is

F=["1,(w,)av, ] 1,(6,)a8, 31)

F can also be expressed in terms of f{y) and f(8) in the same integration domain as

F=["f(wiy|, f(6Mo (2

Eq. 31 is equivalent to Eq. 32, which yields

[0 7,(w)aw, [ 7,(0,)d8, = [ (wiay |, £(e)o (33)

Substituting Eq. 28 into Eq. 33, integrating f(6) and rearranging yield

j +m—2
Uy

Ioa, f(By)de = 1 S J.zIZ £(v) 9;“ 91"“) v 34)
fo f (WY)dV{ 0

Substituting Eqgs. 30a and 30b into Eq. 34 and differentiating it yields

7,(6,)= 1 jtm2 "m/z f(w)arccos*(cot 8, cot y) dy 5

? ¥1 sin O\Itan v —~cot’ 8,

f (v/y)dvfy k=0 k
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In the next step, we need to express f{y4) and f (0y + n) in terms of f{y) and
f(6). Fiber a in Fig. 3 has an orientation (6, y3) or (6, ¥). Let us rotate fiber a into
fiber b orientation which is (6, +7, y,). Fiber b is equivalent to fiber ¢ which has an
orientation (276, ), that is, the fiber orientation (6y +7, y5) is equivalent to orientation
(27n—6, y). Following this logic, one can easily figure out that an integration domain
0, (71:, 6,+ n’) and v, € (O, 'I’,) for fy(G,) and f,(y/y), where 6, < /2, is equivalent
to 0e(2n-0,2n-6,) and v e(y,,n/2) for fly) and f(6) . For this new
integration domain (represented in shadow on the left part of Fig. 5), an equation similar

to Eq. 33 can be obtained

27-6,

Io% f-y(W, )dWy ,[ :’ ”f y(ey )dey = I : ’ f ( W)dWL f (9)(16 (36)

-0,

and the following equation can be derived in the same way as Eq. 35 was:

1 Amez o f( y/)[27t - arccos(cot 6, cot u/)]k
6 = d
f’( o 7[) J':'r f y('l’y )dl/’y k=0 " " sin® eﬂ[tanz V- cot* 6, Voo
Substituting Eqgs. 35 and 37 into Eq. 27 and rearranging yields
f Y(er)jov’ f ’(Wy)d% =
Mmoo arccos"(cot 6, cot l//) + [27: - arccos(cot 6, cot y/)r | (3%
Z%u" J- 2 1(v) sin” 0, \/ tan” y—cot’ 6, W

where 0< 0y < /2.

It can be seen from Eq. 28 that there are j+m-1 coefficients (up to uj+p-2) to be

determined in order to determine the polynomial f(6). Takingm 6 values (0 <0 <m)

and substituting them into Eq. 29, we can obtain a group of m linear equations. In the

same way, we can obtain another group of j-1 linear equations by substituting j-1 6, and

12
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vy values (0 < 0y < 7/2, 0 < yy < W2) into Eq. 38. The j+m-1 coefficients, and
therefore f(€), can be easily obtained by solving the total number of j+m-1 linear
equations. The three dimensional fiber-orientation function f(6, ) can be subsequently
obtained by substituting the f(6) and f(y) into Eq. 17.

Conclusions

The three dimensional short-fiber-orientation distribution in a real composite
usually does not have any symmetry. The works by previous researchers assume a
symmetry in characterizing the fiber-orientation distribution in three dimensions, which is
idealistic. The present procedure improves the works by previous researchers by not
assuming any symmetry, and can be used to characterize the non-symmetric three-
dimensional fiber orientation. The present work also derives a simple fiber-orientation
weighting function and equétions to calculate the fiber inclination angle for different fiber
cross-sections. A procedure was developed to obtain the single angle fiber-orientation
distribution function from one micrograph, which can avoid the unnecessary tedious
calculation of it from the three dimensional fiber orientation or from micrographs of two

orthogonal composite cross-sections.
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Captions

Fig. 1. A fiber with an inclination angle y toward z axis is cut by x-y plane, which

results in an elliptical fiber cross-section.

Fig. 2. All possible cross-section shapes when a fiber end is cut.

Fig. 3. Definitions of 6, y, 6y and . Fiber b is equivalent to fiber a being rotated

around y axis by « degree and fiber ¢ is equivalent to fiber b in orientation.

Fig. 4. Two fibers with the same inclination angle ¥ and A@ =& can not be

differentiated by the cross-section cut by x-y plane.

Fig. 5. The integration domain for Egs. 31 through 38.
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