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Direct Fiber Strengthening in Three Dimensional Random-Oriented

Short-Fiber Composites
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MST-5, Mail Stop G755
Materials Science and Technology Division
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ABSTRACT

A theory for direct fiber strengthening in random-oriented short-fiber composites
is developed. The theory adopts a maximum load composite failure criterion and takes
into account the fiber orientation effect on the probability of a fiber being intercepted by a
specimen cross-section. The strain and load of short-fibers with different inclination
angles with respect to the loading direction were first calculated, and their contribution in
carrying load toward the composite load direction was integrated to give the total load.
The fibers with smaller inclination angles bear greater stress and break first. This load is
then transferred to fibers with larger inclination angles. Direct fiber strengthening
component of the composite strength was calculated from the maximum total load these
short fibers can carry. The present theory predicts a much greater direct short-fiber

strengthening than does previous theories, and provides useful information for composite

design and strength assessment.




1. INTRODUCTION

Composites reinforced with randomly-oriented short fibers have become
increasingly popular in recent years [1, 2], and the strength of such composites is one of
the most important properties. In order to predict the strength of a randomly-oriented
short-fiber-reinforced composite, it is essential to understand the strengthening potential
of short fibers. Although theories have been developed to predict the strength of
composites having continuous or discontinuous fibers with an unidirectional-
orientation[3-7], the strength of composites with randomly oriented short fibers has not
been well studied. The models of Chen [8] and Halpin and Kardos [9] are among the
earliest works on the strength of composites reinforced by randomly oriented short fibers.
They treated the composite as a stack of unidirectional-short-fiber reinforced laminae
bonded together at different angles, which is unrealistic. In addition, these two theories
do not provide any clear relationship between the composite strength and the component
properties since they rely on the experimental failure strength and strain data of the
unidirectional laminae. Friend [1, 10] proposed an empirical strength equation for
randomly oriented short-fiber reinforced metal matrix composites. Due to its empirical
nature, his equation can only be applied to particular alloy matrix composite systems.
For example, his model seems to agree with experimental data of some aluminum alloy
matrix composites, but does not explain the high strength of composites with pure
aluminum matrix.

Fukuda er al [11] was the first who developed a theory to predict the strength of
composites with the three-dimensional-oriented short fibers. However, their theory
| predicts a low fiber strengthening contribution to tﬁe composite strength and does not fit
experimentally observed composite strength data. The theory by Zhu et al [12]
overcomes a few shortcomings of other works. It takes into account the influences of the
thermal stress, short-fiber dispersion hardening, dislocation density in matrix and the non-

homogeneous deformation on the composite strength. However, it also has certain




drawbacks. First, it failed to consider the probability variation of intercepting fibers with
different inclination angles by a planar across-section. This results in its prediction of
lower direct fiber strengthening potential. Second, the composite failure strain included
in its calculation of fiber strengthening can only be obtained experimentally or estimated.
The objective of this paper is to develop a theory which can overcome the
deficiencies of the theories mentioned above. In this model, the probability variation of
fibers being intercepted by a cross-section with varying fiber inclination angles is taken
into account in the calculation of direct fiber strengthening, and the maximum total load

is adopted as the composite failure criterion.

2. STRENGTH THEORY

The strengthening mechanisms in short-fiber-reinforced metal and polymer matrix
composites include: direct short-fiber strengthening{12], short-fiber dispersion hardening
[12], thermally induced matrix work hardening and residual thermal microstress [13-17].
The direct short-fiber strengthening is a major strengthening mechanism and is what we
are going to investigate in this paper.

The following assumptions are made for simplicity: (1) All fibers in the
composite have the same tensile strength, which is a reasonable assumption and has been
widely used in many other theories; (2) All the fibers have the same length and are
randomly oriented; And (3) strong bonding exists between the fiber and the matrix.

Fibers with a smaller inclination angle 6@ toward the loading direction (see Fig. 1)
bear larger stress and break first during a tensile loading. Since the fiber usually has
higher Young's modulus than the matrix, these broken short-fibers shift their previously
carried load through the matrix to fibers with larger inclination angles, which have not
reached their ultimate strength yet. Assuming that 6, is the critical inclination angle

within which every fiber is broken, i.e. . fibers with the inclination angle 6, bear a stress




equal to their ultimate strength and are just about to break, the total load carried by the
short fibers can be calculated by integrating the loads carried by all those unbroken short
fibers and is a function of 8, . Representing the total load by a function P(6, ), the
maximum of P(6, ) can be considered as the total load the short-fiber carries at
composite failure and be used to calculate the direct fiber strengthening.

Before deriving P(6, ) , we need first to calculate the load carried by a fiber with
an inclination angle @. Shown in Fig. 1 is a fiber with an inclination angle 0 < @ < 7/2
in a composite sample. Under load P in x3 direction, the composite strain, €, in the

loading direction is

£, =&, ' | 0y

and the strain in x 1 and x7 directions are

€ T €y =—VEy, 93]

where v is the Poisson's ratio of the composite.

To calculate the strain in a fiber with inclination angle 6, we rotate the coordinate
system around x 1 axis clockwise by an angle of 6 (see Fig. 1). The transformation matrix
Ais

@ a; a| (1 0 0

A=l|a, a, a,|=|0 cos@ -sind 3
ay Gy G| |0 sin@ cos@

where g;j =cosyj, and 0j is the angle between y;j and xj. The strain in y3 direction

(along the fiber) can be calculated as

3
eL(0)= Zayia,, j€; = €35(cos” @~ vsin® 6) @
j=1

i=]




Substituting Eq. 1 into Eq. 4 yields
£3,(6) = ¢,(cos” 6 — vsin® 6) )
By the definition of the critical inclination angle 6, , fibers with 6, will be at their

failure strain and stress, therefore

£3,(6,) = £, =¢(cos’ 6, - vsin® 6,) ©)

where &r is the fiber failure strain. Substituting Eq. 6 into Eq. 5 yields

e,(cos?> @ — vsin? @
£5(6) = f( )

0

cos? 8, — vsin® 6,

At 6<86,, &4(0) calculated with Eq. 5 will be larger than &, and so the fiber is

broken and can no longer carry load, i.e. the load carried by a fiber with an inclination

angle <@, is
f(6)=0 ®

The strain in the fibers with 8 2 8 can be considered approximately equal to

£2,(0). The load carried by these fibers, therefore, is

f(6)= Efafeg’.&(e) ©®)

where ar is the fiber cross-sectional area and Er is the fiber Young's modulus.

Considering f, = E,€,a, , where f;is the maximum load a fiber can carry, and

substituting Eq. 7 into Eq. 9, we get

fo(cos® 6 — vsin® 6)
(cos® 6, ~ vsin® 6,

f(6)= (10)




Setting f{8) =0 in Eq. 10 yields

sin” 8, =1/(1+ v) 11

where @ can be calculated from Eq. (11). From Eq. (10), it can be seen that f{6) is
positive if 8 < &, which means tensile load in the fiber. But, if @ is lager than &, f{6)
will be negative due to the Poisson constriction. Since fibers usually has higher Young's
modulus than the matrix, fibers should always have higher resistance to deformation
than the matrix. Therefore, those fibers under the Poisson constriction will also make
positive contribution toward the composite strength. Based on the above argument, the
absolute value of f{ 6) should be used for the calculation of average load contribution per
fiber toward the loading direction.

With these discussion , the load carried by fibers with different inclination angles

can be summarized as

( -0 6<86,
fo(cos® @ — vsin® 6)
0)=: 6,<0<0 12
16) cos” B, — vsin® 6, ° d (12
_fileosto-vsin’e) o o
| cos” 6, —vsin® 6, 2

To obtain the total load, P(6), at a specimen cross-section perpendicular to the
loading direction (hereafter referred as cross-section A as indicated in Fig. 2), the
orientation distribution of fibers cut by the cross-section as a function of inclination angle
0, n,(6), is also needed. Defining the fiber orientation distribution in the volume of a
specimen as n,{8), we can obtain n{6) from n6) by taking into account the following

two factors: First, the probability of a fiber being cut by the cross-section A changes




with the inclination angle of the fiber, and second, not every fiber intercepted by cross-
section A bears load (e.g. when the fiber end is cut).

It is assumed that short fibers are initially randomly-oriented. The short fibers
tend to align up along the loading direction during tensile loading. But the alignment is
so insignificant that it can be ignored [12]. Therefore, the short fibers can be
approximately considered to remain randomly-oriented during the loading, and the fiber

orientation distribution in the volume of the specimen can be expressed as [11, 12]

n,(6)=Nsin@ 13)

where NV is the total number of short fibers in the composite specimen.
Assuming the effective load-carrying length of a short fiber is l,, which can be

expressed as
L=1-1]2 (14)

where ! and I, are the short fiber length and the average critical fiber length, respectively,

the projected effective fiber length on the loading direction can be calculated as

I,=1l,cos0=(I-1/2)cos6 (15)

n{6) can be calculated from ny(6) and [, as
n.(8)=n,(6),/L (16)

where L is the composite specimen length. It should be noted that the critical fiber

length is also a function of 6. But, the average critical fiber length [, is used here for

simplicity. The total number of fibers in the composite specimen, N, can be calculated by

the following equation




N= amn

la .

where A is the sample cross-section area and Vg is fiber volume fraction. Substituting
Eqgs. 13, 15 and 17 into Eq. 16 yields

VA
n(6)= —f—(l-—l—‘)sin Ocos@ (18)
a 21

!

Knowing n{6), we can calculate P(6,) as

P(6,)=[ n.(6)f(6)cos6dp (19)
Substituting Egs. 11, 12 and 18 into Eq. 19 and integrating yields

4224
P(8,)= 150, 1 5] 2(6,) 20)

where

[3(1+ v)cos® 6, — Svcos® 6, + 4v?/(1+ v)¥’

= 21

£(60) (0052 8, — vsin® 00) @b

It can be seen from Eq. 20 that the maximum of P(6;) can be obtained as
)
- 1——c 22

[P(eo )]max ] lsaf 21 [g(eo)]rmx ( )
The 06 at which g(8y) equals [g(()o)]mx can be obtained by setting

dg(8,)/d8, =0 @2)

and solving it for 8, which yields




6, =0 @3)

Equation 23 indicates that once the fibers parallel to the loading direction fails,
catastrophic failure will occur for random-oriented short-fiber composites. Plots of g( 84
as a function of 0y (Fig. 3) also confirms that g(8,) is at its maximum at 8, = 0.

Therefore, we have

(3-2v)(1+ V)¥ +4y7"

[6(8)).., =2(0)= e @4)
Substituting Eq. 24 and f, =a,0; into Eq. 20 yield
AoV [B-2v)1+ )P +4v?]
[P(Oo )]max - 1 5(1 + V)3/2 (1 - E) (25)

where Oy is the fiber strength. The direct short-fiber strengthening can be calculated as

_ [P(6)] ~ ch,[(3— 2v)(1+ v)** + 4v5/2] 3
o=t 1501+ V)7 (1 - Ei) (26)

where o is the composite strength contributed by the short fibers, i.e. the direct short-

fiber strengthening.

3. DISCUSSION

The new direct short-fiber strengthening theory developed in this paper uses
maximum load criterion for composite failure, which is straight forward and easier to use
than the previous theory by Zhu er al [12]. It also takes into account the probability
variation of fibers being intercepted by a sample cross-section at different inclination

angles in the calculation of the total load. The previous theory by Zhu et al [12]

predicted the direct short-fiber strengthening as




S% = L
o 8((1+ v) 21

* = Vfaf(l+v2)(l Ic) Q7
The present theory predicts a much higher direct short-fiber strengthening than Eq. 27.
For example, taking the Poisson's ratio of the composite as v = (.33, the direct short-fiber
strengthening predicted by the present theory (Eq. 26) is 60% higher than that by Eq. 27.
It should be noted that the present theory does not consider the non-uniform deformation
between fibers and the matrix and it uses an average fiber effective fiber length for
simplicity. This makes the high direct fiber strengthening predicted by the present theory
still conservative.

Taking the Poisson's ratio of the composite as v = 0.33 and substituting it into Eq.
26 yields

V.o l
f oo fl1_ 2 28

Eq. 28 is close to Friend's [1, 10] empirical equation for randomly-oriented short-fiber

reinforced metal matrix composites:

of =Y1% (1 - ’4) 29)
5 U 2

This explains why Friend's empirical equation can describe the strengths of some
aluminum alloy matrix composites. This also indirectly proves the validity of the present
theory. The difference between Eq. 28 and 29 is probably due to the other strengthening
mechanisms such as short-fiber dispersion hardening [12], thermally induced matrix work
hardening and residual thermal microstress [13-17], which are empirically incorporated

into Eq. 29.
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4. CONCLUSIONS

The theory developed in this paper for calculating the direct fiber strengthening in
randomly-oriented short-fiber composites overcomes some deficiencies of previous
theories. It adopts a new maximum load composite failure criterion and takes into
account the fiber orientation effect on the probability of a fiber being cut by a specimen
cross-section. Basic material parameters such as the Poisson's ratio, fiber strength and
critical load transfer length were included in the calculation of the direct fiber
strengthening. The direct contribution of short fibers toward the composite strength
predicted by the present theory is much larger than that predicted by previous theories,
which helps to explain the high strength of some composites. The information provided

by the present theory is useful for composite strength assessment and design.
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Figure captions

Fig. 1. Definition of off-axis angle 0

Fig. 2. Composite sample and its cross-section

Fig. 3. g( 6y as a function of 8, for different v values. g( 6y is at its maximum at 6y =0.
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