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An MPI Version of the BLACS!

D. W. Walker
Mathematical Sciences Section
QOak Ridge National Laboratory
Qak Ridge, TN 37831-6367

Abstract

In this paper, issues related to implementing an
MPI version of the Basic Linear Communication Sub-
programs (BLACS) are invesligated. A set of roulines,
the MPI Linear Algebra Communication Subprograms
(MLACS), are presented, and these are used to im-
plement an MPI version of the BLAGS. The MLACS
provide the same funclionality as the BLACS, bul ez-
tend the functionalily of the BLACS to include both
blocking and nonblocking communicalion, and all four
of the MFPI communication modes.

1 Introduction

The Basi¢ Linear Algebra Communication Pro-
grams {BLACS) are message passing routines that
communicate ratrices among processes arranged with
a two-dimensional, logical, process topology [1, 2, 4].
In addition to point-to-point and broadeast communi-
cation rowtines, the BLACS also include simmple reduc-
tion operations. Routines are also provided for com-
municating trapezoidal matrices, thereby avoiding the
need to communicate unnecessary parts of triangular
and symmetric matrices.

MPI is a proposed standard for message passing [3]
which provides a wide variety of point-to-point and
collective communication routines. Support is pro-
vided for process groups, so that a particular cornmu-
nication operation can be restricted to involve only
a given set of processes. In MPI a process is iden-
tified by a group and its rank within that group. A
process Tnay belong to several groups. In point-io-
point commubication, messages are regarded as being
labeled by a communication coniext, and a tag rela-
tive to that coutext, Communication contexts are a
means within MPI of ensuring that messages intended
for receipt in one phase of an application cannot be in-
correctly received in another phase, Communication

1This work was supported in part by ARPA under contract
number DAALO3-91-C-0047 administered by ARO, and in part
by DOE under contract number DE-AC05-840R21400,

contexts are managed by MPI and are not visible at
the application level. Messages in MP1 are typed, and
general datalypes are supported. These may be used
for communicating array sectioris and irregular data
structures,

The next section gives a brief overview of the
BLACS and points out some differences in the seman-
ties and syntactic style of the MPI and BLACS rou-
tines. Section 3 gives an overview of the MPI Linear
Algebra Communication Subprograms (MLACS), and
their implementation is presented in Section 4. The
MLACS provide the same functionality ag the BLACS,
but their syntax diflers since they conform to an MP1
style of interface. In Section 5, the implementation
of the BLACS on top of the MLACS iz discussed. 1t
should be noted that the MPI implementation of the
BLACS described is this section is experimental, and
does not represent a definitive MPI implementation
of the BLACS. Some concluding remarks are made in
Section 6.

2 An Overview of the BLACS

In this section a brief overview of the BLACS will be
given. The BLACS consist of point-to-point commu-
nication, ¢ollective communication, and awxiliary rou-
tines. Processes are referenced by their location in a
two-dimensional logical process grid, or process lopol-
ogy. All BLACS communication routines are passed
a context argument which uniquely identifies the log-
ical process grid that the communication operation is
perforimed on.

2.1 Poini-To-Point Communication

We first consider point-to-point cornrnunication
routines. The calling sequences of the BLACS point-
to-point tommunication routines are as shown in
Fig. 3 in the Appendix. The first letter of these
routines, denoted in Fig. 3 by v, indicates to which
datatype the routine pertains. Thus, if v is I, for
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Figure 1: The dependence of the shape of the trape-
zoid on the values of uplo and m~n.

example IGESD2D, the routine handles integer data.
Other valid Fortran datatypes are real (S), double pre-
cision (D}, complex (C), and double complex (Z), where
the letter in parentheses shows what should be substi-
tuted for v. The routines vGESD2D and vGERV2D are
for sending and receiving general rectangular matri-
ces, respectively. The routines vTRSD2D and vTRRV2D
are for sending and receiving trapezoidal matrices. In
all the routines, A is the source or destination matrix,
LDA is its leading dimension as specified in its decla-
ration, and CONTEXT is the context. In the send rou-
tines RDEST and CDEST are the row and column in the
process topology of the destination process. In the re-
celve routines RSRC and CSRC are the row and column
of the source process. For general matrices, M and ¥
give the number of rows and columns, respectively, in
the source or destination matrix.

The BLACS routines for communicating trape-
zoidal matrices have an argument UPLO which specifies
an upper trapezoidal matrix if it has the value *U?,
and a lower trapezoidal matrix if it has the value 'L*.
In both cases the actual trapezoid communicated de-
pends on the value of m—n, as shown in Fig. 1. Another
input argument, DIAG, specifies whether the trapezoid
has ones on the diagonal. If DIAG has the value *U?’
then the diagonal is unity and the send and receive
routines do not reference these elements, i.e., they are
not communicated. If DIAG has the value N’ then the
diagonal is not unity and these elements are commu-
nicated.

An important feature of the BLACS point-to-point
communication routines is that messages have no tags.
If the underlying communication layer permits mes-
sage selectivity on tag, but not on source process, then

these tags are generated locally within the BLACS us-
ing a simple algorithm based on the process number of
the sender and the previous communication between
the two processes. This approach is used, for example,
to implement the BLACS on top of Intel’s NX commu-
nication system. MPI permits messages to be selected
according to tag and source process, so in the MPI
implementation of the BLACS described in Section 5
tags do not need to be generated.

The BLACS provide a mechanism for reserving a
range of tag values for use with each BLACS context.
Problems may arise if other components of an applica-
tion, for example other library packages, are not aware
of the portions of tag space reserved by the BLACS.
For example, suppose one process sends data with a
non-BLACS routine before entering a BLACS commu-
nication routine, and the destination process makes
a matching non-BLACS receive call after exiting the
BLACS routine. In this case the non-BLACS send
may be incorrectly matched by a receive within the
BLACS routine. Problems of indeterminacy may arise
if a process enters a BLACS communication routine
with unmatched receive operations still outstanding,
since these may be incorrectly matched in the BLACS
routine. In the MPI implementation of the BLACS
described in Section 5, these problems with communi-
cation safety can be avoided in MPI programs.

2.2 Collective Communication

The BLACS provide routines for broadcasting gen-
eral rectangular matrices and trapezoidal matrices,
and routines for reducing matrices. All the BLACS
cotlective communication routines, shown in Fig. 3,
are passed an argument, TOP, specifying the network
topology that should be emulated during the commu-
nication, and an argument, SCOPE, which specifies the
processes involved in the communication operation.
There are three possible values for SCOPE, depending
on whether all the processes in the process topology
are involved (?A*), or just the processes in a row (*R’)
or column (’C”’) of the process topology are involved.

The routines vGEBS2D and vGEBR2D are for send--
ing and receiving the broadcast of a general rectangu-
lar matrix, respectively. For broadcasting trapezoidal
matrices the routines vTRBS2D and vTRBC2D are used.

The routines vGSUM2D, vGMAX2D, and vGMIN2D are
collective reduction routines that return their results
to the root process at row RDEST and column CDEST of
the process topology. If RDEST has the value -1 then
the results are returned to all processes. Each process,
p, 1s assumed to hold a matrix AP, and an elementwise
reduction is applied to these matrices. Thus, for the




routine vGSUM2D, if process r is the root and af ; is the
(%, j)th element of the matrix A” on process p, then

af; =3, &)

where the sum is performed over all the processes spec-
ified by the SCOPE argument. The routines vGMAX2D
and vGMIN2D not only find the elementwise maximum
or minimum of conformal matrices on each process,
but optionally also return auxiliary arrays giving the
location in the process topology at which the maxi-
mum or minimum occurs. Thus, in addition to re-
turning to the root a matrix of maximum or minimum
values, these two routines return matrices of row and
column indices. The (4, 5) element of the matrix, RA,
of row indices gives the row in the process topology of
the process for which af‘j is a maximum or minimum.
The matrix of column indices CA is similarly defined.
The argument RCFLAG is the leading dimension of the
arrays RA and CA, or -1 if the location is not required.

3 An Overview of the MLACS

The MLACS routines provide the same functional-
ity as the BLACS routines, but have an MPI style
of interface. In the MLACS, point-to-point mes-
sages are typed and tagged so that the correspond-
ing routines have datatype and message tag argu-
ments. The source process and message tag may
be wildcarded in an MLACS receive call to indicate
that any value will be accepted as a match. The
source process is wildcarded by setting the row and
column of the source process in the process topology to
the named constant values MLACS_ANY_ROW and
MLACS_ANY_COLUMN, respectively. It is not per-
mitted to have just one of the row or column indices
wildcarded — either both must be wildcarded, or nei-
ther.

In MPI, point-to-point messages may be blocking
or nonblocking, whereas in the BLACS they are block-
ing. Furthermore, in MPI messages may be sent in one
of four communication modes (standard, ready, syn-
chronous, and buffered). The semantics of the BLACS
send routines correspond to the standard mode. The
MLACS have the same sorts of point-to-point commu-
nication routines as MPI, and provide separate rou-
tines for blocking and nonblocking communication,
and for each of the four send communication modes.
Thus, there are 8 MLACS routines for sending gen-
eral matrices, 8 for sending trapezoidal matrices, 2
for receiving general matrices, and 2 for receiving
trapezoidal matrices. The names of the MLACS rou-
tines for the point-to-point communication of gen-

SEND Blocking Nonblocking
Standard mlacs_send mlacs_isend
Ready mlacs._rsend mlacs_irsend
Synchronous mlacs_ssend mlacs_issend
Buffered mlacs_bsend mlacs_ibsend
RECEIVE Blocking Nonblocking
Standard mlacs _recv mlacs_irecv

Figure 2: Names of the MLACS point-to-point send
and receive routines for general rectangular matrices.

eral rectangular matrices are given in Fig. 2. The
routines for communicating trapezoidal matrices just
have “_TRAP” appended. For example, the routine for
performing a blocking receive of a trapezoidal matrix
is MLACS_RECV.TRAP. The nonblocking send and re-
celve routines are similar to the corresponding MPI
routines. An identifier is returned which identifies the
communication operation, and may be subsequently
used to test for completion of the operation using
the MLACS routines MLACS_WAIT and MLACS_TEST.
These are analogous to the MPI routines MPI_WAIT
and MPI_TEST which, respectively, block until comple-
tion of a communication operation, and return a flag
giving the status.

All MLACS communication routines have a com-
municator argument. The MLACS collective com-
munication routines have a datatype argument, but
like MPI have no message tag. In the MLACS a sin-
gle routine is used for broadcasting data from a root
process and receiving the data on all the other pro-
cesses. For general matrices the routine MLACS_BCAST
is used, and for trapezoidal matrices the routine
MLACS_BCAST_TRAP. The MLACS routines for reduc-
ing a matrix of values over a set of processes are called
MLACS_REDUCE_SUM, MLACS_REDUCE_MAXLOC, and
MLACS_REDUCE_MINLOC. In the MLACS, only
the sum reduction operation is defined for com-
plex data types as MPI does not define minimum
and maximum reduction functions for complex data
types. The arguments to MLACS_REDUCE_MAXLOC
and MLACS_REDUCE_MINLOC differ in an important
way from those of their BLACS counterparts. Instead
of returning matrices of row and column indices to
give the location of the maximum or minimum in the
process topology, the MLACS routines just return a
madtrix of process ranks relative to the communicator
used in the call. The reasons for this difference are
explained in the next section.




4 Implementation of the MLACS

In this section an implementation of the MLACS
will be presented. The communication routines usu-
ally consist of the following stages,

1. check initialization, validate input parameters;
translate between process coordinates and rank;

create general datatype for the communication;

o

call MPI routine to communicate data;

5. free the general datatype.

Here we shall just be concerned with validating in-
put arguments that are specific to MPI, i.e., the com-
municator argument passed to all MLACS communi-
cation routines. In a full implementation the non-MPI
input arguments should also be validated. Validating
the communicator involves checking that it has a one-
or two-dimensional Cartesian topology. As shown in
Fig. 5 in the Appendix, the type of topology asso-
ciated with the communicator is determined with a
call to MPI_TOPO_STATUS, and the dimension of the
topology is given by MPI_CARTDIM_GET. The routine
MLACS_ABORT is called if the topology is invalid. This
routine is passed an error code which is returned to
the invoking environment. The meaning of the error
code is dependent on the MPI implementation. In
Fig. 5 and subsequent figures the error code passed
to MLACS_.ABORT is denoted by “<error>” to indicate
that the appropriate implementation-dependent error
code should be substituted.

Translating from process coordinates to rank is
done by calling the routine MPI_CART_RANK, and the
inverse translation from rank to process coordinates is
done by calling MPI_CART_COORDS.

The example implementations given in this section
do not check the error code returned by the MPI rou-
tines, nor do they attempt to return a valid error code.
In a full implementation these issues would have to be
addressed.

4.1 Implementation
Routines

of Point-to-point

Figure 5 shows an implementation of the rou-
tine MLACS_SEND. The routine INITIALIZE_SEND
calls MLACS_INITIALIZED to check that the MLACS
have been previously initialized by a call to
MLACS_GRIDINIT or MLACS_GRIDMAP. Next INITIAL-
IZE.SEND validates the topology, translates the coor-
dinates of the destination process to a rank, and then

returns. In MLACS_SEND a general datatype is con-
structed that refers to a rectangular m x n subma-
trix. This submatrix consists of n blocks of m con-
secutive elements (the matrix columns) separated by
the leading dimension of the matrix, 1da. The rou-
tine MPI_.TYPE_VECTOR is used to create the general
datatype, mtype. The call to MPI_TYPE_COMMIT tells
MPI that mtype is going to be used in a communi-
cation operation, rather than being an intermediate
stage in the construction of a more complex datatype.
The data are actually sent by the call to MPI.SEND
which performs a blocking send in standard mode. Fi-
nally, the resources used by the datatype mtype are
released by a call to MPI_TYPE_FREE.

In Fig. 6 we present an example implementation of
the routine MLACS_RECV. The structure of this rou-
tine 1s similar to that of MLACS_SEND, except for the
translation between process coordinates and rank in
the routine INITIALIZE_RECV. Here added complica-
tion arises from the need to handle the case in which
the source process is wildcarded. It is not possible
to wildcard just the row index or just the column in-
dex of the source process. Either both, or neither,
of the row and column indices must be wildcarded.
The MLACS named constants MLACS_ANY_ROW
and MLACS_ANY_COLUMN are used for wildcard-
ing the row and column indices, respectively. The data
are actually received by the MPI routine MPI.RECV.
The MPI return status, rstatus, is returned by
MLACS.RECV, and may be used to determine the ac-
tual source process and tag if either or both were wild-
carded.

In Fig. 7 we present an implementation of the
MLACS routine MLACS_SEND_TRAP for sending a
trapezoidal matrix from one process to another. In
this routine a general datatype, mtype, must be con-
structed that corresponds to the appropriate trape-
zoidal matrix, and this makes the code rather more
complicated than for the case of general rectangu-
lar matrices. In the trapezoidal case each column of
the matrix to be communicated is now of a different
length. Also if uplo is °L’ then the stride between"
successive columns is not constant. We, therefore, use
the routine MPI_TYPE_INDEXED to counstruct the gen-
eral datatype, since this routine can handle variable
block sizes and strides. The routine is passed an array
work of size at least 2m which is partitioned into two
parts. The lower part of the array is used to store the
number of elements in each column of the trapezoidal
matrix. The upper part of the work array is used to
store the offset in elements of the start of each column,
relative to the start of the first column. This informa-




tion is evaluated in the routine SETUP_INDEXED and
is then passed into the routine MPI_TYPE_INDEXED
which treats each column as a separate block, and
needs to know the length and starting offset of each
block. In SETUP_INDEXED the arrays for the uplo
= U’ case are first set up, and this information is
then used to deduce the arrays for the uplo = 'L’
case, if necessary. An implementation for the routine
MLACS_RECV_TRAP is shown in Fig. 9.

4.2 Implementation of Collective Rou-
tines

In this section, implementations of the MLACS
broadcast and reduction routines which comprise the
MLACS collective communication routines will be
considered. As discussed in Section 2.2, the BLACS
use separate routines to send and receive broadcast
data. In the MLACS a single broadcast routine is pro-
vided for each matrix type (general and trapezoidal).
This approach is consistent with the MPI specifica-
tion. The routine MLACS_BCAST for broadcasting a
general rectangular matrix is simple to implement,
and an implementation is given in Fig. 8. Note that if
a one-dimensional process topology is used to broad-
cast over just a row or column of processes, then either
the argument rroot or croot is unnecessary and must
be replaced by the named constant MLACS_IGNORE.

The routine MLACS_BCAST_TRAP for broadcasting
a trapezoidal matrix is rather more complicated than
that for general matrices. As with the point-to-
point communication of trapezoidal matrices, the ex-
tra complication comes from constructing the general
datatype for specifying a trapezoidal matrix. The
code for doing this is the same as in the point-to-point
routines. An implementation of the MLACS routine
MLACS_BCAST_TRAP is given in Fig. 10

In Fig. 11 an implementation of the routine
MLACS_REDUCE_SUM is shown. This routine does an
elementwise sum of a matrix. The routine INITIAL-
IZE.COLLECTIVE is called to check that the MLACS
have been initialized, and that the input commu-
nicator has the correct type of topology. INITIAL-
1ZE.COLLECTIVE also translates the process coordi-
nates of the root, rroot and croot, to a process rank.
Then each matrix column is reduced in turn by apply-
ing the MPI routine MPI_REDUCE. A faster implemen-
tation would copy the input matrix into contiguous
storage and then apply MPI_REDUCE to all the data
in a single call, but this would require more working
storage.

The routines MLACS_REDUCE_MIN
and MLACS_.REDUCE_MAX not only find the element-

wise minimum of conformal matrices on each process,
but also return auxiliary arrays giving the location in
the process topology at which the minimum or max-
imum occurs. An important difference between the
BLACS and the MLACS is that in the BLACS the
routines vGMIN2D and vGMAX2D return two matrices
giving the row and column indices of the location in
the process topology of the process containing the min-
imum or maximum value. However, the correspond-
ing routines in the MLACS, MLACS_REDUCE_MIN and
MLACS_REDUCE_MAX, return a matrix of process ranks
to indicate the location of the process containing the
minimum or maximum value. These ranks are relative
to the group associated with the communicator input
to the routine. The MLACS routines were designed
in this way because in the BLACS the row and col-
umn index matrices contain process ranks relative to
the full 2D process topology. However, if a row- or
column-oriented communicator is passed into one of
the MLACS routines there 1s no way for the routine to
compute alocation in the full 2D process topology (un-
less the 2D communicator is also passed into the rou-
tine). The row and column information can easily be
recovered upon return from MLACS_REDUCE.MINLOC
or MLACS_REDUCE_MAXLOC by running the matrix of
ranks through the routine MPI_CART .COORDS.

In Fig. 12, a is the input matrix to be reduced, and
b is the output matrix of minimum values. The array
ranks is the matrix giving the rank of the process for
which the corresponding value in a is a minimum.

Next a general datatype, mtype, corresponding to
a pair of variables of type datatype is created with
a call to MPI_TYPE_CONTIGUOUS. The routine then
reduces each column of the matrix a in turn. For each
column the value of a and the process rank myrank
are copied into the array work. Thus for the i¢th col-
umn, work contains (ay;, myrank), (as;, myrank),...
(ami, myrank), which we can treat as a vector of
length m of type mtype. The array work must be
declared in the calling subprogram to have the same
datatype as the matrix a (i.e., type datatype), and to
be at least 4/m is length. The routine MPI_REDUCE is .
called to perform the reduction using the pre-defined
MPI function MPI_MINLOC. The results are returned
into the upper half of the work array, and these are
then unpacked into the matrices b and ranks, which
are returned to the calling subprogram. The routine
MLACS_REDUCE_MAXLOC 1is implemented in a very
similar way.

The above routines leave the results on just the root
process. The MLACS include a similar set of routines
(MLACS_ALLREDUGCE_SUM,

MLACS_ALLREDUCE_MIN-




LOC, and MLACS_ALLREDUCE_MAXLOC) that leave the
results on all processes. Their implementation fol-
lows that described above, except the MPI routine
MPI_ALLREDUCE is called instead of MPI_REDUCE.

4.3 Support Routines

Only some of the BLACS support routines
have counterparts in the MLACS. An MLACS
analog, MLACS_GRIDINIT to the BLACS routine
BLACS_GRIDINIT is provided. This establishes com-
municators for the one- and two-dimensional pro-
cess topologies used in the MLACS. The process
groups associated with these three output commu-
nicators correspond to all the processes, and the
row and column of processes of which the calling
process is a member. In a simple implementation,
MLACS_GRIDINIT 1s a convenience function - all it
does is return communicators for use in MLACS
routines. In more sophisticated implementations it
may also preallocate resources to be used by the
MLACS routines. The MLACS also include a routine
MLACS_INITIALIZED which returns a flag to indicate if
the MLACS have previously been initialized by a call
to MLACS_GRIDINIT or MLACS_GRIDMAP. The MLACS
routine MLACS_GRIDEXIT should be called when all
MLACS calls for a particular grid have been com-
pleted, and releases resources used in the MLACS
routines, such as the three communicators created
by calling MLACS_GRIDINIT or MLACS_GRIDMAP. Im-
plementations of the routines MLACS_GRIDINIT and
MLACS_GRIDEXIT are given in Fig. 4.

The MLACS counterparts of the BLACS routines

BLACS_PINFQ, BLACS_GRIDINFO,
BLACS_PNUM, BLACS_PCOORD, and BLACS_BARRIER are
MLACS_PROCINFO, MLACS_GRIDINFO,
MLACS_CART_RANK,
MLACS_CART.COORDS, and MLACS_BARRIER. These
routines are simple to implement using MPI so we
will not give the code here. It might be argued that
there is little point in having MLACS routines, such as
MLACS_BARRIER, consisting of just one call to an MPI
routine. However, we believe this approach is useful
since it allows in most cases just MLACS routines to
be used between a call to MLACS_GRIDINIT and the
matching MLACS_GRIDEXIT.

The BLACS routine BLACS_GRIDMAP can be used
to form a grid from a set of processes, and allows
the placement of processes on the grid to be con-
trolled. The MLACS provide an analogous routine,
MLACS_GRIDMAP, shown in Fig. 13. This routine cre-
ates a grid of nprows rows and npcols columns. The
argument usermap is a matrix with leading dimension

1du whose (i, j)th entry is the rank of the process at
location (z, j) in the grid. comm is a communicator out
of whose group the grid is formed. MLACS_GRIDMAP
returns the communicators commall, commrow, and
commcol of the new grid.

The routine MLACS_GRIDMAP first finds the rank of
the calling process using MPI_COMM_RANK. For each
process in the grid the rank, newrank, in the grid is
found, and the value of color is set to zero. For the
other processes color is set to MPI_UNDEFINED.
Here we make use of the fact that both MPI and the
BLACS arrange the processes of a two-dimensional
topology by increasing rank in row-major order. The
routine MPI_COMM_SPLIT is called to create the com-
municator, newcomm, whose group consists of just the
processes in the grid. For those processes in the grid
the communicator newcomm is then passed to the rou-
tine MLACS-GRIDINIT. This creates a grid commu-
nicator, commall, with a two-dimensional topology,
and the row and column communicators, commrow and
commcol, for the grid. For processes outside the grid
commall, commrow, and commcol are all returned with
the value MPI_COMM_NULL.

Most of the other BLACS auxiliary routines are
specific to PVM, or pertain to the generation of unique
tags, and so are not needed in the MLACS. The
routine SETBRANCHES can be discarded because the
MLACS do not specify how communication is to be
performed. Finally, FREEBUFF can also be discarded
as MPI will manage message buffers.

5 Implementing the BLACS on top of
the MLACS

It is quite simple to implement the BLACS using
the MLACS. To do this the BLACS routines need to
know the communicator for all the processes in the
two-dimensional topology, and the communicators for
the processes in a row and column of the topology.
We make use of MPI’s caching facility to cache the
2D grid, row and column communicators, returned by
a call to MLACS_GRIDINIT or MLACS_GRIDMAP, with-
the communicator input to these routines. Then
the context argument in the BLACS routines is re-
placed by this communicator in the MPI implementa-
tion. This is a transparent change at the application
level as BLACS contexts and MPI communicators are
both integers in Fortran implementations. An imple-
mentation of the BLACS routine BLACS_GRIDINIT is
shown in Fig. 15. First MLACS_GRIDINIT is called to
create the three communicators commall, commrow,
and commcol. Then each is cached with the com-




municator comm. It is assumed that the keys akey,
rkey, and ckey are initialized to the predefined value
MPI_KEYVAL_INVALID in a block data routine.

The BLACS point-to-point routines can be im-
plemented simply by recovering the communicator
commall from the cache of communicator comm, and
then calling one of the MLACS routines with the ap-
propriate datatype argument. As an example, a sim-
ple implementation of the routine IGESD2D is given in
Fig. 16.

In the implementation of the BLACS broadcast
routines the appropriate communicator is recovered
from the cache of the input communicator by exam-
ining the value of the SCOPE argument. A simple im-
plementation of the BLACS routine IGEBS2D is given
in Fig. 17. Note that the TOP argument is ignored in
this example. A full implementation of the BLACS
would have to provide the different communication al-
gorithms designated by the TOP argument.

The BLACS reduction routines vGSUM2D can
be implemented in a very similar way to the
BLACS broadcast routines, except in this case we
call the MLACS routine MLACS_REDUCE.SUM or
MLACS_ALLREDUCE_SUM. The implementation of the
routines vGMAX2D and vGMIN2D is a little more compli-
cated as in these routines the rank matrix returned by
MLACS_.REDUCE_MAXLOC or MLACS_REDUCE_MINLOC
has to be converted into matrices of row and column
indices. A simple implementation of IGMIN2D is shown
in Fig. 18. It is necessary for vGMIN2D and vGMAX2D
to pass a work array to MLACS_REDUCE_MINLOC
and MLACS_REDUCE_MAXLoOC. This work space
could come from buffer space allocated when
BLACS_GRIDINIT was called, or it could be created dy-
namically within the routine. In Fig. 18, we have not
shown where the work space comes from. Similar is-
sues arise in the communication of trapezoidal matri-
ces.

The BLACS routine BLACS_GRIDMAP can be im-
plemented using MLACS_GRIDMAP. The implementa-
tion is similar to that of the routine BLACS_ GRIDINIT,
shown in Fig. 15, except MLACS_GRIDMAP is called in-
stead of MLACS_GRIDINIT, and the grid communicators
are only cached if the cailing process is in the grid. An
example implementation is shown in Fig. 14.

6 Concluding Remarks

In this paper we have presented the MLACS, a set
of routines for communicating matrices among pro-
cesses arranged with a two-dimensional process topol-
ogy. The MLACS are based on the MPI communica-

tion system, and reproduce nearly all of the function-
ality of the BLACS. The MLACS also extend the func-
tionality of the BLACS by including blocking and non-
blocking point-to-point communication routines, and
the four MPI send communication modes. In addi-
tion, the MLACS permit the source process and mes-
sage tag message selection criteria to be wildcarded by
point-to-point receive routines. We have also shown
how the MLACS can be used to develop a simple im-
plementation of the BLACS. As well as serving as
a basis for an MPI implementation of the BLACS,
the MLACS can also be used directly in applications.
Their use ensures communication safety, and correct
behavior in multithreaded environments.
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Appendix: Fortran Implementation
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vGSUM2D (CONTEXT, SCOPE, TOP, M, N, A, LDA, RDEST, CDEST)
vGMAX2D (CONTEXT, SCOPE, TOP, M, N, A, LDA, RA, CA, RCFLAG, RDEST, CDEST)
vGMIN2D (CONTEXT, SCOPE, TOP, M, N, A, LDA, RA, CA, RCFLAG, RDEST, CDEST)
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Figure 3: Calling sequences of the BLACS point-to-point and collective communication routines.

subroutine mlacs_gridinit (comm, nprow, npcol, commall, commrow, commcol, error)
integer comm, commall, commrow, commcol

integer nprow, npcol, error

integer dims(2), ndims

logical periods(2), reorder, remaindims(2)

data ndims, reorder, periods(1), periods(2) /2, 3*.false./

dims(1) = nprow
dims(2) = npcol
call mpi_cart_create (comm, ndims, dims, periods, reorder, commall, ierr)

remaindims(1) = .false.
remaindims(2) = .true.
call mpi_cart sub (commall, remaindims, commrow, ierr)

remaindims(1) = .true.
remaindims(2) = .false.
call mpi_cart_sub (commall, remaindims, commcol, ierr)

return
end

subroutine mlacs_gridexit (commall, commrow, commcol, error)
integer comm, commall, commrow, commcol, error
integer ierr

call mpi_comm free (commall, ierr)
call mpicomm free (commrow, ierr)
call mpi_comm free (commcol, ierr)

return
end

Figure 4: Example Fortran 77 implementation of the MPI versions of MLACS_GRIDINIT and MLACS_GRIDEXIT.




subroutine mlacs’send (a, lda, m, n, datatype, rdest, cdest, tag, comm, error)
integer a(lda,*)

integer lda, m, n, rdest, cdest, error

integer datatype, tag, comm

integer ierr, rank

integer mtype

call initializesend (comm, rdest, cdest, rank, ierr)

call mpi_type_vector (n, m, lda, datatype, mtype, ierr)
call mpi-type_commit (mtype, ierr)

call mpi-send (a, 1, mtype, rank, tag, comm, ierr)
call mpi-type_free (mtype, ierr)

return
end

subroutine initialize send (comm, row, col, rank, error)
integer comm, row, col, rank, error

integer coords(2), ierr, status, ndims

logical flag

call mlacs_initialized (flag, ierr)
if (.not.flag) call mlacs_abort (comm, <error>, ierr)

call mpi_topo_test (comm, status, ierr)
if (status .ne. MPI_CART) call mlacs.abort (comm, <error>, ierr)

call mpi_cartdim.get (comm, ndims, ierr)
if (ndims .ne. 2) call mlacs_abort (comm, <error>, ierr)

coords(1) = row
coords(2) = col
call mpi_cart_rank (comm, coords, rank, ierr)

return
end

Figure 5: Fortran 77 code for the routine MLACS_SEND for sending a submatrix consisting of m rows and n columns -
of matrix a from the calling process to process at row rdest and column cdest of the two-dimensional process
topology. This routine is blocking, and obeys the standard communication mode semantics of MPI.




subroutine mlacsrecv (a, lda, m, n, datatype, rsrc, csrc¢, tag, comm, rstatus, error)
integer a(lda,*)

integer lda, m, n, rsrc, csrc, rstatus, error

integer datatype, tag, comm

integer rank, mtype, ierr

call initializerecv (comm, rsrc, csrc, rank, ierr)

call mpi_type.vector (n, m, lda, datatype, mtype, ierr)
call mpi_type commit (mtype, ierr)

call mpirecv (a, 1, mtype, rank, tag, comm, rstatus, ierr)
call mpi_type_free (mtype, ierr)

return
end

subroutine initialize.recv (comm, row, col, rank, error)
integer comm, row, col, rank, error

integer coords(2), ierr, status, ndims

logical flag

call mlacs.initialized (flag, ierr)

if (.not.flag) call mlacs_abort (comm, <error>, ierr)

call mpi_topo_test (comm, status, ierr)
if (status .ne. MPI_CART) call mlacs_abort (comm, <error>, ierr)

if (row .ne. MLACS_ANY.ROW) then
if (col .ne. MLACS_ANY_COLUMN) then

coords(1l) = row

coords(2) = col

call mpi_cartrank (comm, coords, rank, ierr)
else

[ an error occurred ]

return
endif

else
if (col .eq. MLACS_ANY_COLUMN) then
rank = MPI_ANY_SOURCE
else
[ an error occurred 1
return
endif
endif

return
end

Figure 6: Fortran 77 code for the routine MLACS_RECYV for receiving a submatrix consisting of up to m rows and
n columns of matrix a from the process at row rsrc and column csrc of the two-dimensional process topology.
This routine is blocking.




subroutine mlacs send trap (a, lda, m, n, uplo, diag, datatype,
rdest, cdest, tag, comm, iwork, work, error)

integer a(lda,*), work(s)

integer 1lda, m, n, uplo, diag, rdest, cdest, iwork, error
integer datatype, tag, comm

integer rank, ierr, woff, mtype

call initializesend (comm, rdest, cdest, rank, ierr)

voff = iwork/2

call setup_indexed (lda, m, n, uplo, diag, woif, work, ierr)
call mpi-type-indexed (n, work, work(woff), datatype, mtype)
call mpi-type.commit (mtype, ierr)

call mpi-send (a, 1, mtype, rank, tag, comm, ierr)
call mpi_type_free (mtype, ierr)

return
end

subroutine setup-indexed (lda, m, n, uplo, diag, woff, work, ierr)
integer lda, m, n, woff, work(*), ierr

charactersl uplo, diag

integer diagadj, coll, i, temp

diagadj = 0

if (diag .eq. 'U’) diagadj =1

coll = max (0, m-n)

do i=0,n-1
work(i+1) = min (coll+i+1,m) - diagadj
work(i+woff) = i*lda

end do
if (uplo .eq. 'L’) then
do i=0,n/2

temp = work(i+1)
work(i+1) = work(n-i)
work(n-i) = temp
end do
do i=0,n-1
work(i+woff) = i*lda + m - work(i+1)
end do
end if

return
end

Figure 7: Fortran 77 code for the routine MLACS_SEND_TRAP for sending a trapezoidal submatrix.




subroutine mlacs bcast (a, lda, m, n, datatype, rroot, croot, comm, error)
integer a(lda,*)

integer 1lda, m, n, rroot, croot, error

integer datatype, comm

integer rank, mtype, root, ierr

call initialize.collective (comm, rroot, croot, rank, ierr)

call mpi_type_vector (n, m, lda, datatype, mtype, ierr)
call mpi_type_commit (mtype, ierr)

call mpibcast (a, 1, mtype, root, comm, ierr)
call mpi_type free (mtype, ierr)

return
end

subroutine initialize collective (comm, rroot, croot, rank, error)
integer comm, rroot, croot, rank, error

integer coords(2), ndims, status, ierr

logical flag

call mlacs_initialized (flag, ierr)
if (.not.flag) call mlacs_abort (comm, <error>, ierr)

call mpi_topo_test (comm, status, ierr)
if (status .ne. MPI_CART) call mlacs.abort (comm, <error>, ierr)

call mpi cartdimget (comm, ndims, ierr)
if (ndims .eq. 1) then
coords(1) = rroot
if (rroot .eq. MLACS_IGNORE) coords(1) = croot
else if (ndims .eq. 2) then
coords(1) = rroot
coords(2) = croot
else
call mlacs_abort (comm, <error>, ierr)
end if
call mpi_cartrank (comm, coords, rank, ierr)

return
end

Figure 8: Fortran 77 code for the routine MLACS_.BCAST for broadcasting m rows and n columns of matrix a from
the process at row rroot and column croot of the two-dimensional process topology.




subroutine mlacs.recv._trap (a, lda, m, n, uplo, diag, datatype,
rsrc, csrc, tag, comm, rstatus, iwork, work, error)
integer a{lda,*)
integer 1da, m, n, uplo, diag, rsrc, csrc, error
integer datatype, tag, comm, rstatus, iwork, work (%)
integer rank, woff, mtype, ierr

call initializerecv (comm, rsrc csrc, rank, ierr)

woff = iwork/2

call setup.indexed (lda, m, n, uplo, diag, woff, work, ierr)
call mpi_type_indexed (n, work, work(woff), datatype, mtype)
call mpi-type_commit (mtype, ierr)

call mpirecv (a, 1, mtype, rank, tag, comm, rstatus, ierr)
call mpi_type_free (mtype, ierr)

return
end

Figure 9: Fortran 77 code for the routine MLACS_RECV_TRAP for recelving a trapezoidal submatrix.

subroutine mlacs.bcast_trap (a, lda, m, n, uplo, diag, datatype,
rroot, croot, tag, comm, iwork, work, error)
integer a(lda,*), work(»)
integer lda, m, n, uple, diag, rroot, croot, error
integer datatype, tag, comm, iwork
integer rank, mtype, woff, ierr

call initializecollective (comm, rroot, croot, rank, ierr)

call setup.indexed (lda, m, n, uplo, diag, woff, work, ierr)
call mpi_type.indexed (n, work, work(woff), datatype, mtype)
call mpi_type_commit (mtype, ierr)

call mpibcast (a, 1, nmtype, rank, comm, ierr)
call mpi_type_free (mtype, ierr)

return
end

Figure 10: Fortran 77 code for the routine MLACS_BCAST_TRAP for broadcasting a trapezoidal submatrix.




subroutine mlacsreducesum (a, b, ldab, m, n, datatype, rroot, croot, comm, error)
integer a(ldab,*), b{(ldab,*)

integer ldab, m, n, rroot, croot, error

integer datatype, comm

integer root, ierr

call initialize.collective (comm, rroot, croot, root, ierr)

do i=1,n
call mpi_reduce (a{1,i), b(1,i), m, datatype, MPI_SUM, root, comm, error)
end do

return
end

Figure 11: Fortran 77 code for the routine MLACS_REDUCE._SUM for the elementwise summation of general,
rectangular matrices.

subroutine mlacs_reduceminloc (a, b, ldab, m, n, ranks, ldia,
datatype, rroot, croot, comm, iwork, work, error)
integer a(ldab,*), b(ldab,*), ranks(ldia,*), work(*)
integer ldab, ldia, m, n, rroot, croot, iwork, error
integer datatype, comm
integer i, j, root, myrank, mtype, root, ierr

call initializecollective (comm, rroot, croot, root, ierr)
call mpi-comm_type.contiguous (2, datatype, mtype)

call mpi_comm rank (comm, myrank, ierr)
do i=i,n
do j=t,m
work(2*j-1) = a(j,1i)
work(2%j) = myrank
end do

call mpireduce (work, work(2#m+1), m, mtype, MPI_MINLOC, root, comm, error)
do j=1,m
b(j,i) = work(2*(j+m)-1)
ranks(j,i) = int (work(2*(j+m))
end do
end do

return
end

Figure 12: Fortran 77 code for the routine MLACS_REDUCE_MINLOC for locating the elementwise minimum values
of a matrix a, and the ranks of the processes containing the minimum values.




subroutine mlacs_gridmap (usermap, ldu, nprow, npcol, comm, commall, commrow, commcol, error)
integer usermap(ldu,*)

integer ldu, nprow, npcol, error

integer comm, commall, commrow, commcol

integer i, j, color, myrank, newrank, ierr

call mpi_comm rank (comm, myrank, ierr)
color = MPI_UNDEFINED
do i=1,npcol
do j=1,nprow
if (myrank .eq. usermap(j,i)) then
newrank = j-1+(i-1)*npcol
color = 0
end if
end do
end do

call mpi.comm split (comm, color, newrank, newcomm, ierr)

if (color .eq. 0} then
call mlacs_gridinit (newcomm, nprow, npcol, commall, commrow, commcol, ierr)
else

commall = MPI_COMM_NULL
commrow = MPI_COMM_NULL
commcol = MPI_COMM_NULL

end if

return

end

Figure 13: Fortran 77 implementation of the MLACS routine MLACS_GRIDMAP.

subroutine blacs gridmap (comm, usermap, ldu, nprow, npcol)
integer comm

integer usermap(ldu,*), ldu, nprow, npcol

integer ierr, result, commall, commrow, commcol

integer akey, rkey, ckey

common /blacom/ akey, rkey, ckey

save /blacom/

call mlacs_gridmap (comm, usermap, ldu, nprow, npcol, commall, commrow, commcol, ierr)

call mpi_.comm_compare (commall, MPI_COMM NULL, result, ierr)
if (result .ne. MPI_IDENT) then

call cache_communicator (comm, commall, akey, ierr)

call cache_communicator (comm, commrow, rkey, ierr)

call cache_communicator {(comm, commcol, ckey, ierr)
end if

return
end

Figure 14: Implementation of the BLACS routine GRIDMAP.




subroutine blacs_gridinit (comm, nprow, npcol)
integer comm, nprow, npcol

integer commall, commrow, commcol, ierr
integer akey, rkey, ckey

common /blacom/ akey, rkey, ckey

save /blacom/

call mlacs gridinit (comm, nprow, npcol, commall, commrow, commcol, ierr)

call cache communicator (comm, commall, akey, ierr)
call cachecommunicator (comm, commrow, rkey, ierr)
call cachecommunicator (comm, commcol, ckey, ierr)

return
end

subroutine cache.communicator (comm, cachecomm, key, error)
integer comm, cachecomm, key, error

integer ierr, extra, dummy

logical useflag

if (key .eq. MPI_KEYVAL_INVALID)
call mpi keyval create (MPI_NULLFN, MPI_NULLFN, key, extra, ierr)

call mpi.attr_get (comm, key, dummy, useflag, ierr)
if (.not.useflag) then

call mpi_attr_put (comm, key, cachecomm, ierr)
else

[ an error occured ]
end if

return
end

Figure 15: Implementation of the BLACS routine BLACS_GRIDINIT showing how the BLACS communicators
commall, commrow, and commcol are cached with the input communicator, comm.

subroutine igesd2d (comm, m, n, a, lda, rdest, cdest)
integer comm, m, n, lda, rdest, cdest

integer a(lda,*)

integer commall, ierr

integer akey, rkey, ckey

logical useflag

common /blacom/ akey, rkey, ckey

save /blacom/

call mpi_attr.get (comm, akey, commall, useflag, ierr)

if (useflag) then

call mlacs_send (a, 1lda, m, n, MPI_INTEGER, rdest, cdest, 0, commall, ierr)
else

[ an error occurred ]
end if

return
end

Figure 16: Implementation of the BLACS routine IGESD2D.




subroutine igebs2d (comm, scope, top, m, n, a, lda)
character*1 scope, top

integer m, n, lda

integer a(lda,=*)

integer comm

integer cachecomm, ierr, key, nprow, npcol, myrow, mycol
logical useflag

integer akey, rkey, ckey

common /blacom/ akey, rkey, ckey

save /blacom/

call uncache_communicator {comm, scope, cachecomm, useflag, ierr)

if (useflag) then

call mlacs_gridinfo (cachecomm, nprow, npcol, myrow, mycol, ierr)

call mlacs_bcast (a, lda, m, n, MPI_.INTEGER, myrow, mycol, cachecomm, error)
else

[ an error occurred ]
end if

return
end

subroutine uncache communicator (comm, scope, cachecomm, useflag, error)
integer comm, cachecomm, error

character*1 scope

logical useflag

integer key, ierr

integer akey, rkey, ckey

common /blacom/ akey, rkey, ckey

save /blacom/

if (scope .eq. ’A’) then

key = akey

else if (scope .eq. ’R’) then
key = rkey

else if (scope .eq. ’C’) then
key = ckey

end if

call mpi_get.attr (comm, key, cachecomm, useflag, ierr)

return
end

Figure 17: Implementation of the BLACS routine IGEBS2D.




subroutine igmin2d (comm, scope, top, m, n, a, lda, ra, ca, ldia, rdest, cdest)
character*1 scope, top

integer comm, m, n, lda, ldia, rdest, cdest

integer a(lda,*), ra(ldia,*), ca(ldia,*)

integer cachecom, coords(2), ierr

logical useflag

integer i, j, nprow, npcol, myrow, mycol

integer akey, rkey, ckey

common /blacom/ akey, rkey, ckey

save /blacom/

call uncache_communicator (comm, scope, cachecomm, useflag, ierr)

if (useflag) then
if (rdest .ne. -1) the
call mlacs_reduceminloc (a, a, lda, m, n, ra, ldia,
MPI_INTEGER, rdest, cdest, cachecomm, iwork, work, ierr)
else
call mlacs.allreduceminloc (a, a, lda, m, n, ra, ldia,
MPI_INTEGER, cachecomm, iwork, work, ierr)
end if

do i=1,n
do j=1,m
call mpi.cart_coords (comm, ra(j,i), 2, coords)
if (scope .eq. ’A’) then
ra(j,i) = coords(l)
ca(j,1) = coords(2)
else if (scope .eq. ’R’) then
ra(j,i) = myrow
ca(j,i) = coords(1)
else if (scope .eq. ’C’) then
ra(j,i} = coords(1)
ca(j,i) = mycol
end if
end do
end do
else
[ an error occurred ]
end if

return
end

Figure 18: Implementation of the BLACS routine IGMIN2D.




