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GEOTHERMAL CHEMICAL CONTROL AND MONITORING INSTRUMENTATION - AN OVERVIEW 

ABSTRACT 

G. A. Jensen 

Pacific Northwest Laboratory 
R i  chl and, Washington 99352 

We must have accurate knowledge of the geother- 
mal f lu id  chemistry a t  operating temperature i f  
we are to optimize operation, prevent corrosion, 
increase equipment service l i f e  and maximize 
prof i t  and use. Available electrochemical sen- 
sors do not survive a t  the temperatures encoun- 
tered i n  geothermal f lu ids ;  and new developments 
i n  this area a re  required. In order to  f i l l  
t h i s  gap in technology, the Pacific Northwest 
Laboratory (PNL)  i s  developing chemical control 
and monitoring instruments for  measuring i n  s i t u  
characterist ics of geothermal fluids.  Progress 
i n  the development of electrochemical sensors to 
measure pH, carbonate and sulfide-sulfur will be 
d i  sc us s ed . 

INTRODUCTION 

Geothermal fluids i n  the United States a re  heav- 
i l y  loaded w i t h  a variety of chemical species 
(Tab1 1) ich can accelerate or depress corro- 
sion. 71-6y Several of these chemical species 
can precipitate i n  the system causing fouling, 
decreased flow ra tes ,  gas formation, and other 
undesirable effects.  In addition, i f  the tem- 
perature or pressure of a brine changes and i s  
flashed, or outgassing occurs before analysis, 
the fluid composition can dras t ica l ly  change. 
Compounds t h a t  precipitate a re  usually found as 
scales and may not show u p  as a major component 
i n  solution. C m o n  precipitates which remove 
chemical species from solution include calcium 
carbonate, s i l i c a ,  bariun compounds, basic iron 
chloride and metallic sulfides. T h u s ,  i t  is  
desirable, i f  not necessary, to  use chemical 
sensors installed i n  geothermal wells or power 
systems to  obtain accurate information concerning 
the i n  situ chemistry of the fluid.  Available 
electrochemical sensors do not survive a t  the 
temperatures encountered i n  geothermal f lu ids  
and new developments in this area a re  required. 
In order to f i l l  this gap i n  technology, reduce 
the risk, and develop the incentives for  the 
c o m r c i a l  sector to meet the need, the Pacific 
Northwest Laboratory ( P N L )  operated by Battelle 
Memorial Ins t i tu te  for the U.S. Department of 

TABLE 1 .  Typical Geothermal Brine Compositions 

Species 

Total D i  ssol ved 
Sol i d s  

Chloride 
Sodi um 
Sulfate 
Calcium 
Magnesium 
Potassium 
A1 umi num 
Iron 
Si1 ica 
Amnonium 
Nitrate 
Carbon Dioxide 
Lead 
Hydrogen Sul fide 
Si1 ver 

Range, ppm 

1,000 - 10,000 

100 - 1,000 
loo - 1,000 
50 - 500 
10 - 100 

1 - 10 
50 - 140 

0.5 - 5 
1 - 10 

50 - 500 
0.5 - 5 

Not estimated 
0.5 - 5 
0.5 - 5 

Dot es t i  mated 
Not estimated 

Maximurii, ppm 

360,000 

260,000 
87 ,000 
84,000 
65,000 
40,000 
so ,000 
7,200 
4,600 
1,060 
1,050 
1,020 

500 
1 00 
75 

2 

Energy ( D O E )  has embarked upon a program to  
develop sensors for  measuring various ionic 
species and corrosion related in s i t u  character- 
i s t i c s  of geothermal f l u i d s .  The mission of the 
work is  to develop f i e l d  t e s t e d  e lec t r ica l  and 
electrochemical sensors and t e s t  dpparatus for 
i n  s i tu  characterization of geothermal f lu ids  
and to  transfer this  technology so tha t  the user 
needs can be met. 

BACKGROUND 

Geothermal Energy Systems 

Geothermal systems may be c lass i f ied  into two 
categories according to  the phy ical s t a t e  of 
the pressure controlling phase. f 2 )  The f i r s t  
and most c o m n  are  hot water systems, where 
l iquid water is the continuous pressure control- 
l ing  f lu id  phase; vapor may be generated as 
discrete bubbles as the pressure drops, b u t  gen- 
e r a l ly  the temperature i s  so low tha t  l iquid 
predominates. A few geothermal systems, 
including Larderello ( I t a l y ) ,  Matsukawa (Japan), 
Cerro Prieto (Mexico), the Geysers (Californid),  
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and the Hawaiian areas (under development) are 
i n  the second category, characterized by dry, 
superheated steam w i t h  l i t t l e  or no associated 
liquid. 

Because of these differences, two types of power 
generating equipment are used. Where dry steam 
i s  available, condensing steam turbines are nor- 
mally used. The system i s  very similar t o  t h a t  
used i n  conventional power plants, and works 
reasonably well i f  the steam i s  of good quali ty,  
has a relatively small permanent gas content, 
and i s  relatively noncorrosive. 

The vapor-turbine cycle has been developed to  
reduce or el iminate the inherent disadvantages 
where corrosive steam or liquid-dominated 
systems are found. In this  process, the h o t  
water i s  brought  to the surface a t  suff ic ient  
pressure t o  maintain i t  as a l i q u i d  and i s  
passed t h r o u g h  a ser ies  of heat exchangers where 
the heat is transferred t o  boil and superheat a 
h i g h  density vapor. This vapor i s  then expanded 
through a turbine t o  produce power and then flows 
to another heat exchanger where i t  i s  cooled and 
returned t o  the boiler. Practical and economic 
advantages of t h i s  process are believed to  be 
significant because the largest  share of the 
United States (and world) geothermal resources 
i s  i n  systems w h i c h  have temperatures below 
200°C (392 F ) .  

A variety of working fluids can be used i n  the 
vapor-turbine power cycle. Isobutane is  a work- 
i n g  f l u i d  w i t h  the r i g h t  thermodynamic character- 
i s t i c s  and promising economics for  power genera- 
t i o n  i n  binary cycle systems operating below 
163°C (325°F). Freon and propane can be used a t  
lower temperatures. The working fluid usually 
does n o t  cause a corrosion problem, b u t  the pri- 
mary geothermal liquids can cause severe corro- 
sion and scaling. Unwanted flashing and pre- 
mature gassing also affect  system performance 
and heat transfer.  

We must have accurate knowledge of the geother- 
mal f l u i d  chemistry a t  operating temperatures i f  
we are t o  optimize operation, prevent corrosion, 
increase equipment service 1 i f e ,  and maximize 
prof i t  and use. An al ternative t o  sampling with 
i t s  inherent problems i s  instrumentation, which 
can measure the various chemical species and 
physjcal properties of geothermal fluids.  Elec- 
trochemical sensors, which are available, do n o t  
survive a t  the temperatures encountered i n  geo- 
thermal f luids  and others are needed. 

Another important use of these sensors i s  their  
ab i l i t y  to sense real time changes in the system 
chemistry and t h u s  provide information that  can 
be used to prev n catastrophic fa i lure .  Several 
examples existy8f where these sensors sensed 
butane leaks or changes i n  chemical composition 
of f luids  a t  the Magma Corporation's Megawatt 
Power Plant a t  East Mesa California pr ior  to  
unexpected plant shutdown. Repairs and shutdown 

time resulting from the catastrophic nature of 
the fai lure  could have been reduced substantial - 
ly  by early use of the information provided by 
the sensors. The net savings resulting from 
early detection of a problem, and the reduction 
i n  the repairs required, are substantial a d will 
pay for  the instrument development effort .79) 

SENSOR DEVELOPMENTS 

Some specific sensors and equipment needed for  
measuring chemical and other factors dffecting 
corrosion, scale formation, identifying abnor- 
malities which affect  performance and gassing in 
geothermal fluids,  were identified i n  the NMAB 
report, and the priority for their  development 
was tentatively outlined.(7) These pr ior i t ies  
were further refined by personnel i n  the United 
States Department of Energy and PNL t o  identify 
and establish development projects to be conduc- 
ted both in-house and by contract-research ex- 
ternal t o  the laboratory. Tables 2 and 3 l i s t  
instruments being developed. 

TABLE 2. PNL Projects 

Sensor Status 
Reference Electrode kield Testing 
Conducti v i  tv Cell Fiel d Testi na 
Scal i ng Race Meter Designed, n o t  tested 
Redox Probe Fiel d Testi ny 
Corrosion Rate Meter Fiela Testing 

TABLE 3. Contracted Projects 
Status __ con t r  l i  t a r  Sensor - _ _  ___. -- 

General E l e c t r i c  ionwny pH Sensor ( g l a s s )  F i e l d  t e s t i n g  I n I t l l t e d  

L e e d l  and NOrthrUD pH Sensor ( g l a s s )  F i e l a  tes t ing  i n i t i d t e a  

owenr-:11 I " 0 1 S  pH Sensor  ( g l a s s )  L m o r d t a r y  t e s t i n g  c o - > l e t e  

Leeds and fior-twup C02 Sensor t e s t i n g  .nder*ay 

Beck,nan l n s t r i i  ?,at5 S u l f i t e  Ion 3 iscontinued 

U n i v e r 5 , t y  o f  ? e m s y l v a n i d  :!IC-. S i n s i : i v e  & v c l J p ' c n t  r,.2eThdy 

S V -  : c i ' d u c t o r  Devices 

Pacific Northwest Laboratory Developments 

The sensors discussed in th i s  subsection were 
developed a t  PNL to  meet the needs for measuring 
i n  s i t u  properties of geothermal fluids.  All 
devices have been f i e ld  tested to ensure that  
they will perform as expected i n  the required 
application. The f i e ld  t e s t  program will be 
discussed briefly in a l a t e r  section. 

Reference Electrode 

The function of reference electrode is t o  main- 
tain a constant potential a t  each temperature so 
t ha t  the potential of other electrode devices 
can be referred t o  i t .  Any change i n  potential 
between the two electrodes i s  then due t o  the 
other electrode , rather than the reference 
electrode, and would indicate some change i n  
chemical environment. For example, change i n  pH 
and/or the concentration of a specific ion would 
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be indicated by a potential difference between 
reference electrode and the pH and/or specific 
ion electrode. No reference electrode had been 
designed for  use in the highly contaminated hot 
geothermal environment u n t i l  PNL completed the i r  
design. T h i s  design i s  based on a s i lver  chlor- 
ide electrode protected by a s a l t  bridge. The 
unique feature o f  t h i s  design i s  tha t  the elec- 
trode operates a t  high pressure away from the 
high-temperature geothermal f lu id ,  and a t  ambient 
temperature, so tha t  a streaming potential i s  
avoided. A thermal l i q u i d  junction potential i s  
formed, b u t  the potential i s  stable for extended 
lengths of time when KC1 is used as the electro- 
ly te .  The system is n o t  disturbed by the geo- 
thermal environment, and electrode l i f e  a t  250°C 
i s  expected to be measured i n  weeks. This elec- 
trode has been comp!etely laboratory-tested 
throughout the temperature and pressure range 
expected in geothermal systems (250 t o  300'C a t  
pressures of 5000 ps i ) .  T h i s  electrode i s  
referenced on the Standard Hydrogen Electrode 
Scale. Major advantages are: carbon dioxide 
does not in te r fe re  w i t h  the electrode; i t s  
response is  independent o f  the chemical species 
i n  geothermal fluids;  and i t  i s  not affected by 
hydrogen sul f ide ,  the major component of geo- 
thermal systems, which would give a significant 
reaction. Field t e s t s  have been underway since 
1978, a n d  the sensor should be comnercially 
available when several of the other chemical 
sensors are available. Tests a t  East Mesa, 
California, and other locations, indicate tha t  
the reference electrode i s  re l iab le  and rugged. 

Conductivity Cell 

The solution conductivity i s  a useful mea- 
surement because i t  can indicate the amount o f  
dissolved solids in a solution or sa l in i ty  dif-  
ferences from different aquifers (when used i n  
well logging). Continuous monitoring of the 
conductivity can indicate when changes occur in 
plant water chemistry, well flow conditions 
(two-phase flow i n  the bore hole, earthquakes), 
scale deposition, piping leakage, or oxygen 
entering the system. Many o f  these factors,  
particularly sa l in i ty ,  scaling, and oxygen con- 
tent,  contribute to corrosion and a f fec t  p l a n t  
operation; therefore, the corrosion and opera- 
ting engineers find these data a re  useful. 

Two- and four-electrode conductivity c e l l s  a re  
available, b u t  are not suitable for  geothermal 
and other contaminated or scale-producing sys- 
tems because they must make d i rec t  contact with 
the solution to  measure i t s  conductivity. Elec- 
trodeless models have the advantage tha t  they do 
not require electrical  contact with the solution 
and will operate where scaling is  probable. 

The PNL conductivity cell  , (I31 is  the only 
u n i t  of i t s  k i n d  which i s  operable i n ,  the tem- 
perature needed (250°C) for  geothermal measure- 
ments. Basically, the probe consists of two 
toroidally-wound co i l s ,  one driven by a p u l s i n g  

dc voltage and the other acting as a receiver. 
The electromagnetic current from the driven coil 
i s  coupled through the solution and induces a 
current in the receiver co i l .  Inauced current 
i s  proportional t o  the solution conductivity . 
The electronics associated with the probe are 
available from comnercial manufacturers. 

The peak voltage response of  the toroidal coil 
i s  theoretically independent of temperature, so 
any change i n  output will oe due t o  chanyes in 
solution conductivity. In i t i a l ly ,  f e r r i t e  
toroids were used, b u t  the i r  curie point--the 
temperature a t  which the magnetic properties 
changed rapidly and d i  sappeared--was about 240"C, 
too low for this project. Tap core toroids were 
tested,  were found to have a curie point a b o u t  
250"C, and are now use0 i n  a l l  probes. A unique 
spring-loaded seal permits temperature cycling 
without leakage of brine into the coil 
compartment. 

These devices have been f i e ld  tested a t  East 
Mesa, California since 1976. Indications are 
tha t  the conductivity cell  works well, and 
reproducible data can be obtained. 

Oxidation Reduction Potential 

The redox electrode consists of a bare platinum 
electrode, whose potential i s  measured ve sus a 
reference electrode. In the past,(147 the 
redox electrode (also known as E h )  has been used 
to  imply the type o f  chemistry i n  marine envi- 
ronments, r ivers ,  e tc . ,  since i t  i s  assumed t o  
be i n  equilibrium w i t h  the local chemistry. PNL 
investigated this device because i t  was hoped i r  
could imply the general type of chemistry in 
geothermal brines. 

In r ea l i t y ,  the redox electrode(l4) was not 
found to  be a very sensit ive indicator of  the 
general chemistry. However, i t  i s  extremely 
sensit ive to the presence of oxygen and would 
make an ideal oxygen detector. Even traces of 
oxygen resu l t  i n  large increases i n  corrosion 
rates o f  the carbon steel p l a n t  components. 
Consequently, this sensor can easily provide the 
plant operator w i t h  a warning to take preventa- 
t ive  actions when oxygen enters. 

The redox electrode has been successfully fie1 d 
tested a t  East Mesa. Brine usually ex is t s  in a 
highly reducing s t a t e ,  b u t  when oxygen enters 
the system, the redox electrode quickly responds 
On several occasions, during plant s h u t  down, 
the redox electrode indicated oxygen had pene- 
trated the heat exchangers, and plant operators 
were alerted to  use a nitrogen purge to  keep out 
the oxygen. 

Corrosion Rate Measurements 

For economic reasons, geothermal power plants 
will be predo inantly bu i l t  u s i n g  carbon s tee ls .  
In general,fi5) corrosion rates of carbon 
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steels  are acceptably low under reducing condi- 
tions a t  elevated temperatures, and can be 
expected t o  have a long l ifetime. There are 
conditions under which corrosion rates  can be- 
come catastrophic; such as ,  when oxygen enters 
the system a t  elevated temperatures. I t  would 
be very useful t o  have corrosion rate  measuring 
i nstrunentation, which rapidly responds t o  t ran-  
s ient  conditions which resul t  in high corrosion 
rates.  

One device useful in measuring corrosion rates 
i s  the l inear polarization ( L P )  probe. There 
are two domestic comnercial manufacturers of 
l inear polarization equipment which can measure 
instantaneous corrosion rates. Probes have two 
or three electrodes of the same material, ( for  
example, carbon s t e e l )  in which one acts as a 
pseudo-reference electrode while the other two 
are polarized. The t e s t  electrode in polarized 
10 t o  20 mV versus the pseudo-reference and the 
measured current i s  directly proportional to the 
corrosion rate.  Comnercial manufacturers' equip- 
ment reads out directly in mills per year and 
makes this  measurement automatically a t  preset 
times. 

Comnercial LP equipment has been tested exten- 
sively in the f i e ld  a t  East Mesa.(8) These 
probes gave satisfactory l i f e  i n  the cool ing  
water system, and the corrosion resul ts  corre- 
l a t e  f a i r ly  well w i t h  the weight loss coupons. 
However, the comnercial probes failed rapidly i n  
the hot brine. I t  was found that  a high elec- 
t r ical  resistance was forming between the elec- 
trodes and the screw mount ing  studs inside the 
brine system. This high resistance caused the 
probe t o  read lower and lower corrosion rates ,  
until i t  was in error by u p  to a factor of 100. 
A probe, fabricated by PNL, has given good ser- 
vice fo r  over five months and i s  continuing. 
The electrodes on t h  PNL probe pass through a 
spring-loaded Tef1onfa)seal to preserve elec- 
t r ical  continuity in the high-temperature 
system. The electrode area i s  the same as the 
comnercial probe, so the standard electronics 
can s t i l l  be used. 

Even. with the improved PNL probe, the l inear  
polarization method suffers some disadvantages 
for use in geothermal plants. F i r s t ,  the elec- 
trodes must stay wet since an electrolyte i s  
needed for the method to work. T h i s  means, i f  
the system i s  drained and a i r  admitted, the very 
high corrosion that occurs may not be recorded. 
At tempts  were made t o  avoid th i s  problem by 
placing the probe in the U-tube water trap; how- 
ever, in this  configuration, the probe i s  sub- 
j ec t  to being buried in sand and i s  not in the 
main flow stream. This proved to be a problem 
since we found brine velocity t o  be very s ign i f i -  
cant in determining how much corrosion occurred. 

Electrical Resistance Corrosion Probe 

A second device useful in measuring corrosion 
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rate i s  the electr ical  resistance corrosion 
probe. Probes of t h i s  type were installed a t  
many locations throughout the plant. The probe 
incorporates a commercially availaole, res is-  
tance-type corrosion probe and space for  Teflon 
i nsul ated corrosion/scal e coupons. As the thin- 
wall element of the corrosion probe corrodes, 
i t s  electrical  resistance changes and can be 
converted by calculation t o  a corrosion rate in 
units o f  MPY (0.001 in . /yr) .  The probe includes 
temperature compensation on the inside fo r  a 
bridge c i r cu i t .  Some of the probes used in the 
plant had only samples and a thermocouple. The 
commercial unit t h a t  was f i e l a  tested used 
replaceable electrodes which screw onto a ta l  
stud with a gasket of Nitron or Kalrer(bT in 
between t o  keep o u t  the corrosive l iquid.  After 
a couple of weeks a t  170°C, the gasket leakea, 
permitting brine t o  enter the threaded stud 
region, thus corroding the contacts. This 
resulted in a highly resis t ive contact t o  the 
electrode, which prevented a useful corrosion 
rate measurement ( the d vice read low). PNL 

for geothermal environments, and the problem has 
disappeared. The response of these units now 
agrees with corrosion data found using weight 
1 oss coupons placed in geothermal process 
streams, and the LP method. 

CONTRACTED DEVELOPMENTS 

Five sensors, and a new class of sensing ele- 
ments called Chemically Sensitive Semiconductor 
Devices (CSSD's) are being developed on sub- 
contracts with industrial organizations and uni- 
vers i t ies .  The following subsections will uis- 
cuss each of these sensors. The need for each 
sensor was identified in the NMAB report and 
priori t i  zed re1 a ti ve t o  program requirements. 

pH Electrode 

The most important variable measured in water 
chemistry i s  pH, the relative acidity o r  alka- 
l i n i t y .  Changes in pH affect  corrosion, scaling, 
gas formation and the act ivi ty  of other ionic 
species. Corrosion engineers and chemists use 
in s i t u  and other pH measurements to help them 
evaluate construction materials and predict 
materials performance and operating equipment 
performance. Hi gh-temperature glass pH elec- 
trodes have been devel oped and laboratory tested 
under contract with Owens-Illinois a t  Toledo, 
Ohio, and w i t h  Leeds and Northrup, Inc., a t  
North Wales, Pennsylvania. We attempted to  
extend conventional techno1 ogy t o  provide devices 
t o  operate in geothermal systems a t  approximately 
250°C and 5,000 psi pressure. In addition, the 
electrode was to be: 

substituted a new EPDM(a 3 elastomer, developed 

1 )  relatively free of 

( a )  Trademark of E.I. duPont de Nemurs, Inc. 
( b )  Trademark of L' Gande, Inc. 



i n te r fe rences  from i o n i c  species w i t h i n  the 
geothermal f l u i d ,  2) designed t o  wi thstand 
hazards ( f l u i d  hazards, rocks, e t c . )  f o r  a rea- 
sonable time, and 3 )  compatible w i t h  a v a r i e t y  
o f  e l e c t r i c a l  t ransmission systems. 

Laboratory tes ts ,  completed a t  the con t rac to rs '  
l abo ra to r ies ,  showed t h a t  the e lect rodes cou ld  
surv ive i a simulated geothermal environment up 
t o  25OoCr18s19) and respond t o  pH changes a t  
temperatures s l i g h t l y  above 200°C. Work t o  con- 
firm these r e s u l t s ,  completed a t  PNL t o  deter-  
mine the p r e c i s i o n  of the e lec t rode (s1  response 
and c a l i b r a t e  these devices, showed t h a t  the 
e lect rodes could n o t  be used i n  geothermal ser- 
v i ce  a t  temperatures above 100°C. Apparently, 
the pH g lass response i s  e f f e c t e d  by the f l u i d  
and f a i l s  t o  respond t o  pH change i n  a h e r t z i a n  
fashion. Fur ther  development i n  t h i s  area was 
thus abandoned. 

A high-temperature z i r c o n i a  ceramic e lec t rode  i s  
a1 so being developed by General E l e c t r i c  Company, 
Schenectady, New York. Minimum s p e c i f i c a t i o n s  
f o r  t h i s  device a re  the same as f o r  the glass pH 
electrodes. Laboratory t e s t i n g  has shown t h a t  
t h i s  e lec t rode  w i l l  respond to pH changes i n  
s imulated geothermal f u ids a t  285°C and pres- 
sures up to 1200 psi.120 Laboratory work re -  
q u i r e d  to  con f i rm  these r e s u l t s  a t  h ighe r  pres- 
sures, and t o  i d e n t i f y  the l i f e  o f  the device i n  
geothermal f l u i d s ,  has been completed by the 
con t rac to r .  These devices have been tes ted  a t  
PNL to con f i rm  the c o n t r a c t o r ' s  r e s u l t s  and pro- 
v ide  a d d i t i o n a l  i n fo rma t ion  on the e lect rodes 
performance. The e lect rode responds t o  pH i n  a 
near-her tz ian fashion, b u t  i s  n o t  y e t  absolute ly  
r e l i a b l e .  Problems are be l i eved  to be r e l a t e d  
to surface f laws i n  the ceramic z i r con ia .  I f  
t h i s  i s  t rue,  b e t t e r  q u a l i t y  z i r c o n i a  tubes w i l l  
solve the problem. 

Plans are f o r  the e lect rodes t o  be tes ted  i n  the 
f i e l d  i n  ope ra t i ng  geothermal systems t h i s  year.  

CO2 Sensor 

Carbon d iox ide  i s  present i n  a l l  geothermal 
f l u i d s .  When pressures decrease, carbon d iox ide  
gas i s  produced, r e s u l t i n g  i n  sca l ing,  pH change 
and corrosion. I n  addi t ion,  COP eva lua t i on  
can cause severe l o s s  i n  t u r b i n e  and heat  ex- 
changer performance unless p roper l y  c o n t r o l  1 ed. 
Corrosion engineers and p l a n t  operators  need 
these data t o  choose cons t ruc t i on  m a t e r i a l s  pro- 
pe r l y ,  to evaluate equipment l i f e  and p e r f o r -  
mance, and to p r e d i c t  upset cond i t i ons  dur ing 
operat ions.  Leeds and Northrup, Inc., has 
designed a C02 sensor. 

H2S in te r fe rence  i s  achieved us ing a chemical 
g e t t e r  located i n  the d i f f u s i o n  membrane. The 
technology requ i red  t o  develop t h i s  system i s  
c l o s e l y  r e l a t e d  t o  t h a t  requ i red  t o  measure C02 
i n  more moderate app l i ca t i ons .  The pH and r e f -  
erence e lect rodes w i l l  be encased i n  a rugged, 
chemica l l y - res i s tan t  Inconel body w i t h  a sealed, 
n o n r e f i l l  ab1 e, long-1 a s t i  ng KC1 gel d i f f u s i o n  
reference e lect rode and a cen t ra l  measuring pH 
e lect rode.  The e lect rode design was complete i n  
FY 1981, b u t  l abo ra to ry  t e s t i n g  was no t  completed 
because funding t o  complete the work was n o t  
a v a i l a b l e  a t  the time. Funding i s  now ava i l ab le  
and we a n t i c i p a t e  t h a t  t h i s  e lect rode w i l l  be 
tes ted  i n  the near fu tu re .  Companion t e s t s  a t  
PNL, and f i e l d  t e s t i n g ,  are scheduled dur ing 
1982 and 1983. I f  a l l  goes we l l ,  the e lect rode 
should be comnerc ia l ly  ava i l ab le  s h o r t l y  a f t e r  
t he  f i e 1  d t e s t i n g  program i s  completed. 

S u l f i d e  I o n  Electrode 

The t h i r d  most impor tant  chemical component i n  
geothermal f l u i d s  i s  d isso lved hydrogen s u l f i d e .  
This component p lays a s i g n i f i c a n t  r o l e  i n  su l -  
f i d e  scal ing,  con t r i bu tes  t o  corros ion,  and 
poses environmental hazards i f  released i n t o  
surface waters o r  the atmosphere. I n  add i t i on ,  
s u l f i d e  content  may need t o  be considered i n  
making o the r  measurements. S t a f f  a t  Seckman 
Instruments o f  Anaheim, C a l i f o r n i a ,  designed and 
completed pre l  i m i  nary 1 aboratory t e s t i n g  o f  su l -  
f i d e  i o n  s ng e lec t rode  t o  p a r t i a l l y  f i l l  
t h i s  need. f g f i  Unfor tunate ly ,  s u l f i d e  i o n  
concentrat ion i n  geothermal f l u i d s  i s  low; be- 
cause o f  t he  pH found i n  these f l u i d s .  A t  the pH 
usua l l y  present, s u l f u r  e q u i l i b r i a  does no t  favor  
s u l f i d e  i o n  formation. I f  the design had been 
successful ,  the e lect rode may have p a r t i a l l y  met 
the  requ i red  need. The design used a compressed 
s i l v e r ,  mixed w i t h  s i l v e r  s u l f i d e  powder, f o r  
the sensor element; s i m i l a r  elements have been 
used t o  measure s u l f i d e  concentrat ion i n  the 
l abo ra to ry  and i n  o the r  low-temperature environ- 
ments. There has been l i t t l e  o r  no a p p l i c a t i o n  
o r  design experience w i t h  hydrogen s u l f i d e  i o n  
sensors a t  the h igh  temperatures and pressures 
o f  geothermal we1 1 s. 

Pre l  i m i  nary t e s t s  showed t h a t  the e lec t rode  i s  
workable t o  220°C. Addi t ional  t e s t s  were needed 
to de f ine  the operat ing range o f  the e lect rode 
and i t s  range o f  response to s u l f i d e  i o n  concen- 
t r a t i o n ;  however, e f f o r t s  t o  f u r t h e r  develop 
t h i s  device were d iscont inued because o f  the low 
s u l f i d e  i o n  concentrat ions found i n  geothermal 
f l u i d s ,  and advanced CSSD sensors may be more 
s e n s i t i v e  to the s u l f u r  concentrat ions i n  geo- 
thermal f l u i d s .  

A Stowe-Severinghouse Qpe C02 e l e  tr e has Chemically Sens i t i ve  Semiconductor Devices 

Chemically s e n s i t i v e  semiconductor devices 
been designed f o r  t h i s  app l i ca t i on .  c 2 1 7  This  
electrochemical  approach uses a c a r e f u l l y  de- 
signed pH and reference e lect rode combination t o  (CSSDS) o f f e r  a new and considerably more rugged 
measure C02 concentrat ion caused by d i f f u s i o n  c l a s s  o f  devices f o r  measuring the chemical pro- 
o f  CO2 through the  membrane. Compensation f o r  p e r t i e s  o f  geothermal f l u i d s .  These devices 
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w i l l  be small, poss ib l y  no l a r g e r  than the o r d i -  
nary ch ip  used i n  hand ca l cu la to rs ,  cou ld  be 
incorporated i n t o  a v a r i e t y  o f  con f i gu ra t i ons  
f o r  both above-surface and downhole measurements 
and may be more v e r s a t i l e ,  measure several com- 
ponents s imultaneously t o  prov ide more data, and 
be l ess  c o s t l y  than comnon sensors used today. 
The add i t i ona l  data should he lp  t o  i d e n t i f y  the 
more sub t le  nuances o f  s o l u t i o n  chemistry af fec- 
t i n g  ma te r ia l s  performance. CSSD's can a l so  be 
designed to operate i n  the d i g i t a l  mode fo r  
s imple data t ransmission. While they have 
obvious advantages, considerable research and 
development must be undertaken before they can 
be used widely  f o r  f i e l d  measurements of pH, 
Cop, calcium, s u l f i d e  as H2S o r  S and other  
chemical species. 

Work i s  underway a t  t he  U n i v e r s i t y  o f  Pennsyl- 
vania t o  develop these unique devices fo r  geo- 
t h e m 1  use and o the r  purposes. This work was 
funded by PNL dur ing FY 1980 and 1981, b u t  i s  
now funded by DOE'S Basic Sciences D iv i s ion .  
The device operates i n  a fashion s i m i l a r  t o  a 
v a r i a b l e  capaci tor .  A chemical component causes 
the i o n  s e l e c t i v e  l a y e r  to s h i f t  the capaci tance 
o f  the diode s t ruc tu re .  This  s h i f t  can be mea- 
sured and i s  repeatable f o r  the i o n  being mea- 
sured. An AC s ignal  i s  impressed on the N-P 
j u n c t i o n  f o r  t h i s  measurement and the s h i f t  i n  
c a p a c i t i v e  reactance i s  measured. CSSD's a l so  
r e q u i r e  a re ference electrode. Other e l e c t r o n i c s  
i nc lude  a power supply, phase change detector ,  
and other  minor components. A mu1 t ipurpose CSSD 
could be const ructed i n  a fashion s i m i l a r  t o  
t h a t  used i n  f a b r i c a t i n g  c a l c u l a t o r  chips. Be- 
cause o f  the l a r g e  e f f o r t  requ i red  t o  complete 
the  research and development, we would n o t  expect 
these devices t o  en te r  the market du r ing  the 
1983-84 t ime  per iod.  When ava i l ab le ,  they cou ld  
prov ide an accurate, re1 i a b l e ,  and convenient 
means o f  measuring several i o n i c  species i n  s i t u  
i n  geothermal b r i nes  and o the r  systems. 

FIELD TESTING 

A l l  devices success fu l l y  t es ted  i n  the labora-  
t o r y  are expected t o  be f i e l d  tes ted  above 
ground i n  p l a n t  systems, o r  below ground i n  
wel ls ,  as descr ibed below. 

I n-P1 a n t  Tests 

The chemical sensors w i l l  be evaluated a t  the 
Magma Corporat ion 10 b%l geothermal power p lan t ,  
l oca ted  a t  East Mesa, C a l i f o r n i a ,  and successful 
devices w i l l  be i n s t a l l e d  a t  the power p l a n t  
be ing designed by DOE, i n  cooperat ion w i t h  San 
Diego Gas and E l e c t r i c  Company, f o r  demonstra- 
t i o n  a t  Heber, C a l i f o r n i a .  Pipe taps and by- 
passes, etc., have been incorporated i n t o  the 
p i p i n g  and o the r  equipment a t  appropr ia te loca-  
t i o n s  f o r  i n s e r t i n g  the  devices i n t o  the  b r i n e  
a t  the Magma Plant ,  and are being planned fo r  
t he  Heber operat ion.  I n  concurrent  programs, 

co r ros ion  s tud ies have and w i l l  f o l l o w  the e f f e c t  
o f  the b r i n e  from the beginning o f  operat ion f o r  
a t  l e a s t  two years. I n  addi t ion,  an i n t e n s i v e  
ma te r ia l s  eva lua t i on  program i s  underway t o  
asce r ta in  the s u i t a b i l i t y  o f  a v a r i e t y  o f  metals 
and o the r  ma te r ia l s  f o r  geothermal use. 

SUMMARY 

DOE and PNL have a methodology and plan f o r  pro- 
v i d i n g  new, advanced electrochemical  sensors f o r  
geothermal use. Some o f  these prototype sensors 
completed l abo ra to ry  tes t i ng ;  some are, o r  w i l l  
soon be, f i e l d  tested. I n  additon, new sensor 
concepts have been evaluated, research i s  under- 
way t o  provide the data necessary f o r  t h e i r  manu- 
facture,  and we a n t i c i p a t e  t h a t  the technology 
w i l l  be t rans fe r red  t o  the user by 1984. 

The h igh  temperature sensors w i l l  provide the 
co r ros ion  engineer and p l a n t  operator w i t h  a new 
s e t  o f  t o o l s  i d e n t i f y i n g ,  evaluat ing,  and 
reducing the adverse ef fects  o f  harsh process 
environments. Though these devices are being 
developed f o r  geothermal systems, they have 
app l i ca t i ons  i n  o ther  process equipment as we l l ,  
such as petroleum product ion r e f i n i n g ,  nuc lear  
reac to r  power p lants ,  chemical processing, pu lp 
and paper product ion,  and many others.  I n  par- 
t i c u l  a r ,  the chemical ly  s e n s i t i v e  semiconductor 
devices o f f e r  a means o f  moni tor ing a wide range 
o f  chemical species and i d e n t i f y i n g  s y n e r g i s t i c  
i o n i c  e f f e c t s  which accelerate corrosion, o r  
otherwise a1 t e r  the performance c h a r a c t e r i s t i c s  
o f  ma te r ia l s  and processes. 
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