
Impact of Commmu&qtiofi P+o~col on Performance 
Patrick H. Worley 

Oak Ridge National Laboratory 
P.O. Box 2008 

Oak Ridge, Tennessee 37831-6367 
email: worleyph@ornl.gov 
phone: +l 423 574-3128 
Fax: +1 423 574-0680 

1. Introduction. On previous generation MPP systems, interprocessor communi- 
cation often represented a significant fraction of the runtime of production parallel 
codes, and the choice of communication transport layer and communication protocol 
were important steps in porting and tuning application codes. Processor, network, 
and transport layer performance continue to improve, and the sensitivity of perfor- 
mance to these implementation issues needs to be reexamined. 

In this paper we use the PSTSWM parallel application code to examine 
1) single processor performance, 
2) peak achievable point-to-point communication performance, 
3) performance variation of kernels as a function of communication protocols, 
4) performance of vendor-supplied collective communication routines, and 
5) performance sensitivity of full code to choice of parallel implementation 

’ for the SGI/Cray Research T3E and Origin 2000, using both the MPI [2] and SHMEM 
libraries to implement interprocessor communication. While other researchers have 
looked at communication performance on these machines (e.g., [l]), this study differs 
in that we examine the effect on peformance of an application code. 

2. PSTSWM. The Parallel Spectral Transform Shallow Water Model (PSTSWM) 
is a message-passing parallel benchmark code and parallel algorithm testbed that 
solves the nonlinear shallow water equations on a rotating sphere using the spectral 
transform method. PSTSWM was developed by the author and by I. T. Foster at 
Argonne National Laboratory from the serial code STSWM, written by J. J. Hack and 
R. Jakob at the National Center for Atmospheric Research. PSTSWM was used to 
evaluate parallel algorithms for the spectral transform method as it is used in global 
atmospheric circulation models. 

PSTSWM has characteristics that make it useful for performance studies. It makes 
interesting and varied demands on the communication subsystem, multiple parallel 
algorithms are embedded in the code, and multiple message-passing transport layers 
are supported. See http : //www . epm. ornl . gov/chammp/pstswm/index . html for a 

“This submitted manuscript has been 
authored by a contractor of the U.S. 

Computer Science and Mathematics Division 

Oak Ridge National Laboratory is managed by Lockheed Martin 
Energy Research Corporation for the United States Department 
of Energy under Contract No. DE-ACO5-96OR22464. 

Government under Contract No. DE- 
AC05-960R22464. Accordingly, the 
U.S. Government retains a nonexclus 
royalty-free license to publish or 
reproduce the published form of this 
contribution, or allow others to do so, 
for U.S. Government purposes.” 



partial bibliography of the performance studies utilizing PSTSWM. 

3. Platforms. We focus on the T3E and Origin2000 in these studies, but include 
measurements from the following platforms to aid in the understanding of the results. 

Intel Paragon XP/S 150 at Oak Ridge National Laboratory. 
This machine has 1024 MP nodes (3 50-MHz iPSC/860 processors per node). 
Measurements were taken in January, 1998. Only one processor per node was 
used for computation. KAI math routines were used. 

CRI T3D at Cray Research in Eagen, MN. 
This machine had 128 150-MHz DEC Alpha EV4 processors. Measurements were 
taken in August, 1996. 

IBM SPZ at NASA Ames Research Center. 
This machine had 160 RS6000/590 nodes (“wide”, 66.7 MHz POWER2). Mea- 
surements were taken in August, 1996. ESSL math routines were used. 

Convex SPP-1200 at the National Center for Supercomputer Applications. 
This machine has 64 120-MHz HP ‘PA-RISC 7200 processors (8 Hypernodes). 
Measurements were taken in September, 1996. 

SGI/CR T3E-900 at the National Energy Research Scientific Computing Center. 
This machine has 532 450-MHz DEC Alpha EV5 RISC processors. Measurements 
were taken in January, 1998. 

HP/CONVEX SPP-2000 at the National Center for Supercomputer Applications. 
This machine has 64 180-MHz HP PA-RISC 8000 processors (4 Hypernodes). 
Measurements were taken in April, 1998. VECLIB math routines were used. 

Intel PII- cluster at Oak Ridge National Laboratory. 
This machine has 10 266-MHz dual Pentium II nodes. Measurements were taken 
in February, 1998. LINUX and Portland Group f77 compiler were used. 

SGI,/CR Origin2000 at Los Alamos National Laboratory. 
This machine has 128 195-MHz MIPS RlOOOO processors. Measurements were 
last taken in April, 1998. SCSL math routines were used. 

4. Serial Performance. Table 1 contains the MFlop/sec rates for one processor runs 
of the code PSTSWM for a number of different problem sizes. PSTSWM computes 
the solution by timestepping, advancing the approximation to a new timelevel (in 
simulation time) by using the approximations at the two previous timelevels. The 
computational complexity and code executed for a timestep in PSTSWM are identical 
for all timesteps. 

We use the standard benchmark problem for the shallow water equations, global 
steady state nonlinear zonal geostrophic flow [3], and two problem size classes: T42 



and T85, characterized by the following computational grids and complexity. 

physical grid Fourier grid spectral coefficients flops per timestep 
T42 64 x 128 64 x 64 946 4129859 
T85 128 x 256 128 x 128 3741 24235477 

There is also a vertical component to the problem sirqe. For example, T42L16 is a 
T42 horizontal grid with 16 vertical levels. The complexity of solving the problem is 
linear in the number of vertical levels. 

64-bit precision floating point computation is used in all experiments. Math library 
routines are used for the Fourier transforms where available, as indicated in the 
description‘of the platforms in the previous section. 

Intel Paragon 
CR1 T3D 
IBM SF2 
Convex SPP-1200 
SGI/CR T3E-900 
HP/Convex SPP-2000 
Intel PII- cluster 
SGI/CR Origin2060 

T42Ll T42L3 T42L16 T85Ll T85L3 
13.9 14.0 13.9 13.1 13.1 
25.2 25.7 23.3 24.9 24.4 
98.3 98.3 91.0 107.7 102.4 
24.9 23.2 22.9 24.2 24.0 
79.4 70.0 64.1 84.7 70.7 

138.8 107.3 83.5 117.5 114.2 
45.4 37.2 30.3 38.9 33.7 

153.0 140.8 92.5 131.7 130.1 
TABLE 1 

Serial MFlop/sec rates. 

From this data it is clear that the serial performance of MPP processors has generally 
improved over the past few years, and that optimized math libraries are important 
performance enhancers. Also note that some effects of the memory hierarchy on 
performance can be observed from the variation in MFlop/sec rate as the problem 
size varies. 

5. Point-to-Point Communication Performance. Communication overhead is 
best measured in the context of the full code, but it is useful to establish a-‘per- 
formance baseline by determining the “peak achieveable” point-to-point interpro- 
cessor communication performance. Performance-critical interprocessor communica- 
tion in PSTSWM is implemented using two basic types of commands: SWAP and 
SENDRECV. The message-passing transport layer used to implement these com- 
mands is specified at compile time, while the protocol used is specified at runtime. 



To characterize the basic communication capabilities in terms relevant to PSTSWM, 
we use the PSTSWM SWAP command. We measure the time required to exchange 
262144 64-bit floating point numbers between two neighboring processors, varying 
the protocol used for the exchange to find the minimum. We refer to these as the 
2MB experiments. We also measure the time to swap 1024 and 16384 64-bit values, 
referring to these as the 8KB and 128KB experiments, respectively. 

Two general classes of protocols are used: unordered (ping-ping) and ordered (ping- 
pong). While not all protocols are available for all message-passing transport layers, 
they are drawn from those described in Table 2. Examples are given using MPI 
commands. Note that the examples have been simplified (to save room) and do not 
accurately represent the MPI implementations. 

Table 3 contains the maximum observed bandwidth and typical SWAP overhead (“la- 
tency”) for the corresponding communication protocol. (Note that this protocol does 
not necessarily have the smallest latency.) The following observations on communi- 
cation performance on the T3E and the Origin2000 can be drawn from this summary 
data: 

l The T3E and the Origin2000 demonstrate significant performance improvement 
over previous generation MPPs of like architecture. (Note however that the SPP- 
2000 performance is better than both, for these particular tests.) 

l SHMEM achieves considerably higher bandwidth and lower latency than MPI, 
but MPI performance is still an improvement over what was achieveable on earlier 
systems. 

Looking at the raw timing data, we can also determine the sensitivity of performance 
to the choice of communication protocol. On the T3E the achievable bandwidth 
shows little sensitivity to the communication protocol when using MPI, and the sim- 
ple protocols are generally slightly better. On the Origin2000, MPI performance is 
somewhat more sensitive to the communication protocol, but the communication pro- 
tocol is still not too important. This is a significant difference from earlier results on 
the Intel Paragon and the IBM SP2, but is similar to the T3D results, and appears 
to reflect the SGI/CR implementation of MPI. When using SHMEM, the variability 
is higher (for both systems). 

6. Parallel Algorithm Performance. Some indication of the impact of communi- 
cation protocol on performance can be seen from the point-to-point communication 
tests, but it is difficult to use these results to predict the effect on application code 
performance. Here we examine this issue in more detail, looking at the effect on the 
performance of specific parallel algorithm options in PSTSWM. 



Unordered 

(0,O): simple 
Processors 1 and 2 
MPIRSEND 
MPIRECV 

(0,l) : nonblocking send 
Processors 1 and 2 
MPI-ISEND 
MPI-RECV 

(0,2): nonblocking receive 
Processors 1 and 2 
MPIJRECV 
MPI-SEND 

(0,3): nonblocking send & receive 
Processors 1 and 2 
MPIIRECV 
MPIJSEND 

(0,4): ready send 
Processors 1 and 2 
MPLIRECV 
MPIRSEND 

(0,5): nonblocking ready send 
Processors’ 1 and 2 
MPLIRECV 
MPI-IRSEND 

(0,6): native sendrecv 
Processors 1 and 2 
MPISENDRECV 

TABLE 2 

W): 

(l,l): 

(c9: 

(1,3): 

0,4): 

(1,5): 

(1,4): 

Ordered 

simple 
Processor 1 Processor 2 
MPISEND MPIRECV 
MPIRECV MPISEND 

nonblocking send 
Processor 1 Processor 2 
MPI-ISEND MPIRECV 
MPIRECV MPISEND 

nonblocking receive 
Processor 1 Processor 2 
MPIJRECV MPIRECV 
MPISEND MPISEND 

nonblocking send & receive 
Processor 1 Processor 2 
MPIJRECV MPIRECV 
MPLISEND MPISEND 

ready send 
Processor 1 Processor 2 
MPIIRECV MPIRECV 
MPIRSEND MPIRSEND 

nonblocking ready send 
Processor 1 Processor 2 
MPIlRECV MPIRECV 
MPIIRSEND MPIRSEND 

synchronous 
Processor 1 Processor 2 
- MPIRECV 
MPISEND - 
- MPISEND 
MPIRECV - 

SWAP protocols (simplified). 



Paragon 
: MPI 
: NX 
: SUNMOS 

T3D 
: SHMEM 

SP2 
: MPI 

SPP-1200 
: MPI 

T3E-900 
: MPI 
: SHMEM 

SPP-2000 
: MPI 

Origin2000 
: MPI 
: SHMEM 

Paragon 
: MPI 
: NX 
: SUNMOS 

T3D 
: SHMEM 

SP2 
: MPI 

SPP-1200 
: MPI 

T3E-900 
: MPI 
: SHMEM 

SPP-2000 
: MPI 

Origin2000 
: MPI 
: SHMEM 

2MB 
BW lat. prot. 

73 82 W.3) 
32 (0,3) 

2: 63 (0,3) 

183 19 (072) 

96 136 (0,4) 

45 104 (0,4) 

286 30 (0,2) 
543 7 (OJ) 

654 39 (0,6) 

142 39 (OJ) 
287 15 @,l) 

2MB 
BW lat. prot. 

118 75 (1,0) 
118 50 (1,O) 
154 35 (1,O) 

126 12 (1,2) 

71 ‘74 (1,l) 

29 27 (~3) 

163 29 (1,6) 
336 9 W) 

541 20 (1,O) 

126 33 (1,5) 
166 8 PAr 

ITA 

Unordered 
128KB 

BW lat. prot. 

70 136 (0,3) 
71 83 (0,3) 
- - - 

- - - 

245 24 (0,O) 
494 7 W) 

629 15 (076) 145 23 0x2) 

128 29 
222 14 

(096) 
(071) 

Ordered 
128KB 

BW lat. prot. 

107 105 (1,3) 
114 62 (1,0) 
- - - 

- - - 

134 20 (1,O) 
340 5 (1,2) 

547 9 (170) 

98 17 (173) 
140 8 (Ll) 
BLE 3 

40 17 W) 
71 10 (W 

Peak observed bandwidth (MBytes/set) and latency (microseconds) for optimal protocol. 

8KB 
BW lat. mot. 

48 139 (0,3) 
57 74 (093) 

66 25 (072) 
258 7 (071) 

57 30 (071) 
114 12 KG? 

8KB 
BW lat. prot. 

52 82 W> 
75 52 (U-4 
- - - 

- - - 

- - - 

47 21 (LO) 
210 5 (W 

158 5 W) 



In the spectral transform method used in PSTSWM, fields are transformed at each 
timestep between the physical (longitude-latitude-vertical) domain and the Fourier 
(wavenumber-latitude-vertical) domain using Fourier transforms in the longitude di- 
rection, and between the Fourier and spectral (spectral coefficients - vertical) do- 
mains using a Legendre transform in the latitude direction. All parallel algorithms 
in PSTSWM are based on decomposing the different computational domains onto 
a logical two-dimensional grid of processors, PXx PY. In each ,domain, two of the 
domain dimensions are decomposed across the processor grid, for example, assign- 
ing longitude-latitude patches of the physical domain to individual processors, but 
leaving one domain dimension undecomposed. 

Two general types of parallel algorithms are used in PSTSWM: transpose and dis- 
tributed. In a transpose algorithm, the decomposition is “rotated” before a transform 
begins, to ensure that all data needed to compute a particular transform is local to a 
single processor. In a distributed algorithm the original decomposition of the domain 
is retained, and communication is performed to allow the processors to cooperate in 
the calculation of a transform. 

Three transpose algorithms are examined, each of which is functionally equivalent to 
MPI-ALLTOALLV: 

l srtrans: sends P-l messages using SENDRECV to transpose across P processors; 
l swtrans: sends P-l messages using SWAP to transpose across P processors; 
l logtrans: sends @(log P) messages using SWAP to transpose across P processors. 

Each of these are options for both the parallel Fourier and parallel Legendre trans- 
form algorithms. Here we restrict our study to transpose-based parallel Fast Fourier 
transform algorithms. One distributed Fast Fourier transform is also examined: 

l dfft: sends O(logP) messages using SWAP to calculate Fourier transform dis- 
tributed across P processors. 

The distributed Legendre transform algorithms in PSTSWM are based on the evalua- 
tion of distributed vector sums. Four distributed vector sum algorithms are examined, 
the first three of which are functionally equivalent to MPLALLREDUCE: 

l exchsum: an exchange-based algorithm implemented using SWAP; 
l halfsum: a recursive halving-based algorithm implemented using SWAP; 
l ringsum: a ring-based algorithm implemented using SENDRECV; 
l ringpipe: a pipeline-based algorithm implemented using SENDRECV. 

Each of these algorithms can be implemented using the protocols described in Ta- 
ble 2. Two different types of implementations are also supported. The first uses the 
basic SWAP and SENDRECV commands to exchange the data. The second reorders 



the elements of the SWAP or SENDRECV protocol in an attempt to overlap com- 
munication with computation and to hide communication latency. These algorithms 
and protocols are described in more detail in [5]. The overlap algorithms using un- 
ordered and ordered communication protocols will b-e designated by (2, z) and (3, z) 
respectively, where x E { 1,2,3,4,5,6}. 

To examine the performance issues in these different implementation options, we run 
the following experiments. We use one-dimensional decompositions of the form 8x1 or 
1x8 and 32x1 or 1x32, where the first decomposition in each pair is for examining par- 
allel Fourier transform algorithms, and the second is for examining parallel Lengendre 
transform algorithms. The problem sizes are based on T42L16 and T85L32 as they 
would appear on a two-dimensional processor grid of size 8x8, 16x32, or 32x16. This 
is accomplished by modifying the problem size to achieve the desired granularity 
(problem size per processor), and allows us to examine the performance for problem 
granularities that are typical of what would be seen in practice. 

Results are presented in Table 4. The first column is the overall best protocol for each 
parallel algorithm. Multiple protocols are given when no single protocol is good for all 
problem sizes and numbers of processors. The other columns indicate how much per- 
formance is lost by using the MPISENDRECV-based protocol instead of the optimal 
MPI protocol and by using the optimal MPI protocol instead of the optimal SHMEM 
protocol. Note that these are total runtimes, and that the indicated performance loss 
is a function of both the size of the messages and the communication/computation 
ratio for a given experiment. 

From this data it is clear that there is no reason to use anything but (0,6) on the T3E if 
using MPI, but that significant performance gains are possible if the SHMEM library 
is used instead. Note that, unlike with MPI, the overlap algorithms are optimal for 
some of the SHMEM experiments, indicating that overlap logic can be useful with 
this architecture if the message-passing library supports it. 

On the Origin2000, the conclusions are less clear. While (0,6) is rarely optimal, it is 
a good choice for all but a few cases. For those few cases, however, it should not be 
used. Similarly, MPI is competitive with (or better than) SHMEM in most cases, but 
MPI performs much worse than SHMEM for some of the smaller granularity cases. 

7. Full Simulation Performance. Efficient parallelizations of PSTSWM exploit 
two-dimensional decompositions of the domain, parallelizing both the Fourier and 
Legendre transforms. Here we consider two classes of parallel algorithms. 

l DTH: double transpose for the Fourier transform and halfsum for the Legendre 



T3E 
t(0,6),mpi-topt,mpi topt,mpi-topt,shmem opt. protocols 

IPi topt 
P = 32 P=8 

T42 T85 
0% 0% 
0% 0% 
0% 0% 
1% 0% 
0% 0% 
0% 0% 
0% 0% 
0% 0% 
“) . 

mlem 

P = 32 p = 8 top t,st tlr 
I T42 T85 

0% 8% 
0% 0% 
0% 0% 
0% 0% 
0% 0% 
0% 0% 
2% 0% 
1% 0% - 7 

T85 
18% 
16% 
11% 
20% 
39% 
24% 
27% 
29% 

T42 
54% 
30% 
39% 
82% 
75% 
87% 
121% 
143% 
_._, 

.x--j-- (04) d&2) 

(076) 
(0~6) 
cm 
(076) 
(W) 
@,6) 
(076) 

exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

,_ ,,_ 

Origin2000 

1 opt. protocols 1 

I ( ‘P=8 

dfft 
exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

t(0,6),mpiTtopt,mpi 
I 

topt,mpi-t opt,shmem 

t opt ” 

I 

IPi &pt,shmem 

P = 32 P=8 1 P = 32 
T42 

(0,1),(3,3) 1% 
(0,4), (076) 0% 
(0,1),(0,5) 1% 
(WWJ) 0% 
Rw42) 6% 

(0,l) 2% 
(OJ) 0% 
(OJ) 1% 

T85 T42 T85 T42 T85 
10% 7% 7% -4% -10% 
48% -4% 0% -11% 32% 
27% 3% 2% 5% -5% 
3% 6% 14% 59% 23% 
3% 0% -5% 78% 3% 
4% 0% -9% 93% -7% 
1% -1% -3% 115% 35% 
1% 0% -3% 116% 37% I 

T85 
22% 
20% 
0% 
9% 
4% 
1% 
0% 
0% 
TAE 
I 
IL1 

T42 
0% 
0% 
5% 
0% 
1% 
1% 
0% 
0% 

34 
Effect of protocol on performance of parallel algorithms. 

transform. The double transpose algorithm uses a transpose to serialize the 
Fourier transforms, then another transpose to return to a domain decomposition 
analogous to the original. This approach has the best load balance among the 
parallel algorithm options. halfsum is the best MPI-ALLREDJJCE-equivalent 
algorithm on the T3E and the Origin2000. 

l DR: dfft/ringpipe. This parallel aglorithm combination has good load balance, 
requires the minimum storage, and has the maximum potential for communica- 
tion/computation overlap. 

DTH and DR stress the underlying transport mechanisms in significantly different 
ways, and represent different tests of the communication protocol sensitivity. Due to 
their good load balances, the performance differences between them reflect primarily 
the differences in communication costs, 



i 

For each platform we measure the runtimes when solving T42L16 and T85L16 using 
l opt: the best transpose algorithms (for DTH) and the best communication pro- 

tocols for each parallel algorithm, determined empirically, 
l gen: srtrans (for DTH) and (0,6)-based parallel implementations, and 
l toll: MPI collective communication routines MPIALLTOALLV and 

’ MPIREDUCEALL (for DTH), 

for logical processor meshes of sizes: 4 x 4, 4 x 8, 8 x 8, 8 x 16, 16 x 16, and 16 x 32. 
Algorithms gen and toll represent the typical algorithm choices if nothing is known 
about the communication protocol sensitivities. Measurements are also taken using 
8 x 14 for DR and 14 x 8 for DTH, since the 128 processor experiments do not run 
efficiently on a 128 processor Origin2000 (due to competition with system processes). 

Results are presented in Table 5. The optimal times are given for both MPI and 
SHMEM implementations. Additionally, the performance degradation (if any) is 
given for using the gen and toll implementations instead of the optimal MPI imple- 
mentation. 

l 23’b results. For DTH, gen is the best MPI implementation except for the 
smallest granularity cases. In those two cases co11 is the best, but toll is an erratic 
performer in general. For DR, gen is never the best, and it is worthwhile searching 
for the optimal MPI protocol. But the optimal SHMEM implementations are 
faster than the optimal MPI implementations in all cases, and often significantly 
so. 

l Origin2000 results. For DTH, gen is a reasonable choice for the T42L16 cases, 
but the optimal MPI protocols are worth identifying for the T85L16 cases. toll is 
never a good choice. For DR, gen is a poor choice, and it is worthwhile searching 
for the optimal MPI protocols. The optimal SHMEM implementations are faster 
than the optimal MPI implementations only for the largest granularity cases. In 
the other cases, the optimal MPI implementations are consistently better. 

8. Summary. Both the T3E and the Origin2000 results indicate the importance 
of considering the interprocessor communication protocols when tuning performance, 
but the similarity in the results ends there. On the T3E, performance is optimized by 
using the SHMEM communication library. On the Origin2000, optimization should 
include both the communication library (MPI or SHMEM) and the particular protocol 
used in the implementation. Disappointingly, the collective communication-based 
implementation coEZ is not competitive on either platform, which is consistent with 
earlier evaluations on other parallel platforms [4]. 



T3E 
alg. prot. library 1 4 ~4 4 x 8 8 x 8 8 x 14 8 x 16 16 x 16 16X 32 

T42L16 runtimes 
DTH opt MPI 30.9 14.8 7.4 4.5 4.1 2.5 2.0 

opt SHMEM 29.6 13.9 6.5 3.5 3.2 2.0 1.2 
DR or>t MPI 23.6 12.5 7.3 6.9 5.7 4.4 - 

opt SHMEM 1 22.2 11.2 6.0 5.2 4.0 2.8 - 
T85L16 runtimes 

DTH opt MPI 311.3 149.8 69.8 38.6 36.2 20.6 12.4 
opt SHMEM 304.6 144.3 65.6 36.4 33.4 17.0 9.4 

DR ODt MPI 228.9 116.3 61.7 39.1 37.4 21.5 18.9 
opt SHMEM 1 221.1 110.8 57.0 35.7 29.5 16.9 12.6 

T42L16 MPI performance sensitivity 
DTH gen 0% 0% 3% 0% 0% 17% 13% 

co11 1% 5% 0% 7% 7% 0% 0% 

DR en MPI 1 5% 8% 3% 2% 4% 
T85L16 MPI performance sensitivity 

2% - 

DTH gen 
co11 

MPI 0% 0% 0% 0% 0% 0% 
MPI 1% 6% 5% 17% 16% 2% 

0% 
23% 

1 DR .sn MPI 1 12% 7% 4% 4% 7% 8% 7% 

Origin2000 
a. prot. library ( 4 x 4 4x 8 8 x8 8 x 14 8 x 16 16 x 16 16 X 32 

T42L16 runtimes 
DTH opt MPI 17.5 9.9 5.9 4.9 - - - 

opt SHMEM 18.7 10.4 6.0 - - - - 
DR opt MPI 18.3 10.3 6.8 6.2 - - 

opt SHMEM 18.6 10.6 7.2 7.6 - - - 
T85L16 runtimes 

DTH opt MPI 250.9 126.4 52.5 42.6 - - - 
opt SHMEM 244.1 112.7 54.8 - - - - 

DR opt MPI 250.6 122.5 56.2 40.1 - - - 
opt SHMEM 234.0 104.8 56.4 54.5 - - - 

T42L16 MPI perforinance sensitivity 
DTH gen MPI 0% 1% 3% 4% - - - 

co11 MPI 28% 37% 14% 16% - - - 
DR gen MPI 36% 18% 3% 5% - - - 

T85L16 MPI performance sensitivity 
DTH gen MPI 2% 5% 13% 17% - - - 

co11 MPI 11% 30% 120% 111% - - - 
DR gen MPI 14% 35% 92% 24% - - - 

TABLE 5 
Runtimes of 5 day simulations of PSTSWM ( seconds) and performance degradation from using gen 

and ~011 algom’thms: (tgen,mpi - topt,mpi)/topt,mpi and (tcoll,mpi - topt,mpi)/topt,mpi* 



. 

9. Acknowledgements . This research was supported by the U.S. Department 
of Energy under Contract DE-AC05-960R22464 with Lockheed Martin Energy Re- 
search Inc. We thank NASA-Ames for access, to their SP2 system, and Cray Research “I_. ^‘. , 
for access to a T3D system. We thank the Advanced Computing Laboratory at Los 
Alamos National Laboratory for access to the SGI/Cray Research Origin2000. The 
Intel XP/S 150 MP Paragon operated by the Center for Computational Science at 
ORNL is funded by the Department of Energy’s Mathematical, Information and Com- 
putational Sciences Division of the Office of Computational and Technology Research. 
Access to the CONVEX Exemplar SPP-1200 and the HP/CONVEX Exemplar SPP- 
2000 was supported by the National Center for Supercomputing Applications, Uni- 
versity of Illinous at Urbana-Champaign under grant number ASC960028N. Access to 
the SGI/Cray Research T3E-900 at the National Energy Research Scientific Comput- 
ing Center was supported by the Environmental Sciences Division, U.S. Department 
of Energy. 

REFERENCES 

[l] G. R. LUECKE, J. J. COYLE, AND W. UL HAQUE, Comparing communication performance of 
MPI on the Gray Research T3E-600 and IBM SP-2, Performance Evaluation and Modelling 
of Computer Systems, (1997). http://hpc-journals.ecs.soton.ac.uk/PEMCS/. 

[2] MPI COMMITTEE, MPI: a messbge-passing interface standard, Internat. J. Supercomputer Ap- 
plications, 8 (1994), pp. 165-416. 

[3] D. L. WILLIAMSON, J. B. DRAKE, J. J. HACK, R. JAKOB, AND P. N. SWARZTRAUBER, A 
standard test set for numerical approximations to the shallow water equations on the sphere, 
Tech. Report ORNL/TM-11773, Oak Ridge National Laboratory, Oak Ridge, TN, 1991. 

[4] P. H. WORLEY, MPI performance evaluation and characterization using a compact applica- 
tion benchmark: code, in Proceedings of the Second MPI Developers Conference and Users’ 
Meeting, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 170-177. 

[5] P. H. WORLEY AND B. TOONEN, A users’guide to PSTSWM, Tech. Report ORNL/TM-12779, 
Oak Ridge National Laboratory, Oak Ridge, TN, July 1995. 


