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Abstract

Thispaperpresentsmodelsandmeasurementsof antennainputimpedanceinresonantcavitiesathigh
frequencies.The behaviorof inputimpedanceis usefulin determiningthe transmissionand reception
characteristicsof anantenna(aswellasthetransmissioncharacteristicsof certainapertures).Resultsare
presentedfor both thecasewherethecavityisundermoded(modeswithseparateanddiscretespectra)as
wellastheovermodedcase(modeswithoverlappingspectra).A modalseriesis constructedandanalyzed
to determinethe impedancestatisticaldistribution.Both electricallysmallaswellas electricallylonger
resonantandwallmountedantennasareanalyzed.Measurementsin a largemodestirredchambercavity
arecomparedwith calculations.Finallya methodbasedon powerargumentsis given,yieldingsimple
formulasfor the impedancedistribution.

1 INTRODUCTION

This paper constructs models for the input impedance Zi. of linear antennasin an electrically large cavity
[I]. Cases where modes have overlapping spectra, and the antenna impedance approaches the free space
value [2], as well as separate discrete spectra [3], [4] are both considered in this statistical treatment. The
behavior of the impedance and its extreme values are useful in determiningg the transmission and reception
characteristicsof an antenna (as well as the transmissioncharacteristicsof certain apertures) and practical
bounds for these quantities. An electrically short center ck.ivendipole is treated iirst by means of a modal
seriesfor the cavity field. The statisticalproperties of this high-frequency cavi~ field are introduced from
which distributions for the impedance are extracted by means of Monte Carlo simulation and asymptotic
analysis. These are compared to measurementsin a mode stirred chamber. It-is then shown how these
results apply to an electrically longer resonant dipole and a wall-mounted monopole antenna. The known
enhancementof the field near the cavity wall is shown to correspond to the behavior of the field correlation
function, which is used in the treatment of the monopole antenna. Finally, a simplified approach using
conservation of power is carried out that yields practically useful formulas for the impedance distributions
and extreme values.

“Sandiaisa multiprogramlaboratoryoperatedby SandiaCorporation,a LockheedMartinCompany,fortheUnitedStates
Departmentof EnergyunderContractDEAC0494AL85000.

tTheauthorsarewithSan&aNationalLaboratori&,Albuquerque,NM,exceptJ)r.Leewhok with ITT kdustties/AES,
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2 ELECTFUCALLY SHORT ANTENNA

Using a modal series for the cavity field [4], [5], with time dependence
electricallyshort dipole sligned with the z sxis ia

e–;ti, the input impedance of an

( ),Zin~R–iX+&.&~ ~ (iw2/Q) W’/”’
n 3A. k)lc3v W2(1 + i/Q) – w%n

(1)

- where I&d is the antenna radiation resistzmcein bee space, which for a short dipole of lenpjh 2h, with
triangularcurrent distribution, is [6]

(2)

.The quantiw q. N 1207rohms is the impedance of free space and k = w/c is the wavenumber (c is the
vacuum velocity of light). The quantity Z = R - iX is the local impedance of the antenna, consisting of
the ohmic resistanceR and local reactzmceX (this includes the quasistaticpart of the cavity summation),

oximately capacitive 1/ (wC) for a short dipole [6]which ia appr
,,.,

~ 2moh
“m

(3)

where the expsnsion parszneteris

S2e=Q-2(l+h12) (4)

the antenna fatness parameter is Q = 21n(2h/a), and a is the dipole radius. The cavity volume ia V, its
quali~ factor is Q, and the cavi~ vector potential eigenfunctionsare ~n, normalized such that [4]

(5)

3 STATISTICS OF CAWTY FIELD ‘

This paper ia concerned with electrically large, complex cavities, for which a statistical description of the
modes in (1) becomes applicable [7], [8], [9], [10], [11]. The ,mvity eigenvalues(resonantfrequencies) Wnhave
spacingsthat can be described by a slowly vmying mean (Awn) times a random variable s

Awn = Wn+I – u. = (Awn) s (6)

where the asymptotic formula for the mean is [12], [13]

,,

(Aun) N 7T’C3/ (VOJ;) , Wn + co (7)

The probability density function for the normalized spacing s is Poisson (exponential) when the cavity
geometry is simple (e.g., separable,where eigenvaluedegeneracy occurs frequently) [11], [12]

.,
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d’(s)=e-s, O<s<m (8)

and ia Rayleigh (Wigner) when the cavi~ ia complex [10], [12] I

f~ (s)= ~se-’z”i’, O<s < w (9)

Complex geometry is @piCal of applications and thus the Rayleigh spacing is more frequently encountered.
constant spacing

S=l (lo) I
ia also useful to study because it gives similarresultsfor the impedance as does the Rayleigh spacing, but is
simple enough that asymptotic analysisof the modal seriescan be carried out.

The cavity eigenfunctions are taken to be isotropic (all three components have similar statistics) with
Gaussiandensity [7], [11]

fc (0–&—_e-c212

which follows the chosen normalization [7]

(11)

(12)

/

w

3 ~zfA.. (Lt.) dA.. =
/

m (2f( (() w = 1 (13)
-m -m

An argument in support of the Gaussian nature of the eigenfunctions, relates to the ray description of
these eigenfunctiona,where the ray contributionsto the modal field at an observationpoint consist of many
separatereturnafrom the complex cavity bounck@ that are wkorrelated [11], [7]. Experimentson cavities
with smooth walls have shown that deviations from this simple density do arise and can be included as
contributions correspondingto periodic ray trajectories [11], [14], [15].

The correlation function for the eigenfunction components ia dHerent than that for scalarwavefunctions
[11] and ia given by [2], [16]

(An. (ZI) An. (Z,))
/% (a, 22)=

/(4. (4) (4. (’2)) ‘N+ashk?::%]

where ~ = WJC.

(14)



4 EXPERIMENTS AND SIMULATIONS

The parameterthat describes the degree of spectral overlap is

a = k3V/(2+Q) (15)

This parameter is the ratio of the energy stored in the cavi~ modes over a narrow spectral bandwidth
(containingmany complete modes) to the same energy if the modal amplitudesare fked at the averagepeak
level. If the cavity is undermoded (separate discrete modal spectra) a <<1. If the cavity is overmoded
(many overlappingmodes) CY>>1. Figures 1 through 3 show Smith chats for the input impedance of near
resonantmonopoles in the wall of a mode stirred chamber for the undermoded through overmoded range.

The mode stirredchamber (37 ft x 23 ft x 13 ft) has a volume of V N 313 m3. The cavity is not simply a
rectangularbox, since a mode stirrerwas present in the chamber, but was not moved during the frequency
sweeps that generated the data. The quality factor of the chamber was determined to be Q = 80,000 by
examhing the 3 dB width of isolated modes at 220 M&q at 920 MHz it was estimated fiorn the 220 MHz
value, ~y the scaling@, to be approxirnatelyQ N 165,000; at 15 GHz it was takenas the experimentalvalue
1,280,000. The antennaswere near resonsmtwall moynted monopoles. The dimensions of the monopoles
were 2a = 0.102 in, h N 12.953 in at 220 MHz, hs 2.97in at 920 MHz, end 2a = 1.51 mm with h N 4.325
mm at 15 GHz.

Figures 4 and 5 illustrate the behavior of the spectra for the two limits of a. Figures 6 and 7 show
comparisonsof the monopole input resistancewith Monte Carlo simulationof the series

(16)

where we have approximated the summand (Q and (Aun) are approximated as constant also) since we are
including only those modes near the observation renge of w values captured in the figures (the range of
included modes w contains a range of Wnthat is slightly larger than the w range so that negligible error
is incurred in this approximation). The simulationswere done with all three @pes of eigenvaluespacings.
The agreementwith the experimentalresultsis gooc$ although there is some smallvariationwith realization
of the random numbers, the Rayleigh sad uniform spacing results are in slightly better agreement with
measurementsthan the Poisson spacing.

The nearresonsat monopoles in the experimenthad nearly zero free space react~ce (except the 920 MHz
antenna which had the experimentally determined value j8.5 ohms). The experimentally determined free
spsce value of the radiation resistanceswere 44 ohms at 220 MHz and 46 ohms at 920 MHz. The frequency
span was 10 MHz with 4800 frequency points in the 220 MHz experiment; the simulationsused 200 modes
with 1000 frequency points. The frequency span was 1 MHz with 801 frequency points in the 920 MHz
experiment; the simulationsused 400 modes with 1000 fxequency points. The frequency span was 10 MHz
also with 801 frequency points in the 15 GHz experiment.

5 ASYMPTOTIC BEHAVIORS

Using the modal seriesit can be shown that the frequency average (taken over a narrow band, but including
many complete modal spectra) of the normalized input impedance approachesunity [1]

(17)

I
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It can also be shown in the overmoded limit that by replacing the modal sum by an integral (inserting
d&/ (Awn) in the summand) the impedance approachesunity [1]

Zin+l, a+m (18)

In the next hvo subsectionsthe uniiormly spaced modal seriesis used to estimate extreme behaviors of the
impedance.

5.1 Uniform Spacing, Single Mode

The undermodedlimit a <<1 has separated,discrete,spectra. The largestvaluesof the input resistanceand
reactance in this region occur when w is near a resonance. Thus we can consider a singlemode of the series
(the closest mode to the observation frequency) and estiiate the extreme statistics by regarding w -w.
to be a random variable with uniform density between & (Awn) /2 (for @picslly used uniform frequency
sampling). The distribution function, derived fiorn the ratio of independent random miabks [17], for this
case is

., . .

J
co

F (Tin)= 1 – / [K. (7-ins/4)– KI (rincY/4)], rin >> a, a<< 1f (r) dr N 1 + ~~--e-”na 4
Tin

(19)

wherethe identity [18]jome-”’~ = e“a12Ko(va/2) has been used and K. (z), K1 (z) are the modified

Besselftmctions. Figures8 and 9 showthis result (long dashedcurve-s)comparedto measurementsand Monte
Carlo simulationsof the uniformly spaced modal series (CYis too large in Figure 9 for this result to be valid
over any substantialrange of r;n). Over most of the valid rzmge(19) can be simplifiedto

(20)

Howevernear the upper limit of r~n,the corresponding density function exhibits exponential behavior that
allowsone to establishpractical upper bounds for the resistsme values

-%42

f (7-J N e ~r{n Q, r~na>>1 (21)

The normalizedreactance also exhibits exponentialbehavior near the upper limit (an averagingmethod [19]
can be used to give a more uniformlyvalid expression) [1]

(22)

which shows the extreme reactance magnitude is approximately half the extreme resistance.
The number of independentsamplesin a fkequencysweepis dependent on the number of modes spanned.

For example at 220 MHz there are onIy 141 modes in the frequency sweepeven though there are many more
frequencies sampled. If, for a <<1, the frequency sweep is sufficientlyfine to resolve the spectral peeks
(over-ssmplingin frequency) then the density function of the peakais of interest. Thus, n- the upper limit

5

,–——— , ,. ,, .7 ,7 .= -T=,:. ~>,,

. . ..- .,. .rr ... . .,2?., . . .. . . . . . . ,,, . . —,; -..-... , .,. ;. ~ ..>, -,7:, . .. . .. .. . .. . ~... < . :$,~z&._ - ,,, , --., ---- -,-



--

of rin we can set w‘ = Wn and fid the single mode density function for the peak values (the square of a
Gauasienrandom variable)

r. (23)+,.42 , .pna >>1 .f (%J = &e

The exponential behavior in (23) is the same as (21). The distribution function corresponding to (23) is

F (rjJ E erf ~~w) , (24)

where erf (z) is the error function, and the number of independent samples corpsponds to the number of
modes contsined in the flequency aweep.

5.2 Uniform Spacing, Between Modes

The smallest values of the input resistance for a << 1 occur when w is between modes. Taking the
frequency to be exactly between modes of the uniformly spaced series, the modal terms can be taken in
psirs about the observation frequency, each pair having a simple exponential distribution. The inihite
summation requirea an inlinite sequence of convolutions to be performed to obtain the density function
[17]. Using the Laplace transform to convert the convolutions to an inilniteproduct, and using the identity

[20] ~~1 p – A] =*- to evaluate the product, the density can be found by inverse

trsnsformof the resultingfunction for frequency samplesbetweenmodes. The integralof tlie densityfunction
is thus the distribution

,.
“7?-rin ~ “()F (r;.)= Fx ~ .,

where from the residuemethod .
-.
w

Fx (x)=1 – e-x4=2/”2 cosh (a) ~ ~ (–l)m ~2m+~~~~a2,n2e-(2,Y+l)2x
m+

(25)

(26)

An alternativerepresentationfor the densityfunction, that convergesrapidly for x + O,can also be obtained
from the inverse transform using the identity [21],~e–”2J(4tl = & jc~~~ este-”@ds (although it is

‘d.ifiicultto integrateto obtain the distribution function) ~ (ri.) = fx (#rin/ (8a)) #/ (8a)

[
4a2/=2cosh (CY) f ;~ (–1)X (~ + 1/2) e-@+l/2)2~2/(4x)f’ (x)= e-x (27)

m=o

Figures8 and 9 show this distributionfunction (short dashed curves) compared to measurementsand Monte
Carlo Simulations (this result describes the entire distribution in Figure 9 since the placement of w is not
critical when the modes are overlapping and a is of order unity).

Usingthe second representation(27) we see that the density function ex.hibltsexponential decay for very
smallr~n ,,

,.

/
f (rin) = cosh (CY) ~e-”@”+lJr’”)12, r~n<< a

in

6
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which again allows one to establish practicsl lower bounda for the input resistance. For a << 1, the
CYrjn/2term in the exponential can be dropped, and (28) cm be integratedto give the distribution function

[
F (Tin)s 2erfc ~-], where erfc(z) is the complementaryerror function. The number of independent
ssmples, when we are over-samping in frequency, is again the number of modes spanned in the frequency
sweep.

For a of order unity, the fist representation(26) can be used to give

showing the exponential decay for large rin. If we take the overmoded limit cx >> 1, from the second
representation(28) we &d that the normalized input resistanceis Gaussiandistributed about the mwm of
unity

(30)

5.3 Overmoded Limit

By the central limit theorem [17] we expect both components of the impedance to become Gaussian dis-
tributed in the overmoded limit CY>> 1 since many modes are equaUycontributing to the modal series.
Finding the variance of both components thus allows us to write

Z;n-l+TO( —iXO(’, CY>>l (31)

where ~ and ~’ are independent, normalized, zero meau Gaussiana,snd the stsadsrd deviationa are found
to be [1]

6 ELECTRICALLY LONGER ANTENNA

The preceding analyticaland simulationresultswerebased on the ~sumption of an electricallyshort dipole,
but the experimentswere conducted using near resonantmonopole antennas. This conflicting situation will
be resolved in the present and n@ sections. The integrdifferential equation for a center driven linear
antenna tilde a cavity cambe written ss

,
–V06 (z)= l?. =

ii) W2(1 + i/Q) /W; J
h

——
x An=(z) An=(z’) ~ (Z’) dz’ + W

&ov W2(1 + i/Q) – W%
n -h [(l+*zw:J$& 2-’@)]

(33)

where the second term ia the local quasistatic contribution. The snterma current distribution 1(z) is the
unknown. The antennais assumedto be thin and thus the local quasistaticterm can be thought of as having
the transmissionline form

7
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(34)

This term, in addition to the boundszy conditions

I (*h)= O (35)

play a dominant role in determining the distribution of current (at least up to the first resonance). The
leading term of the current can thus be taken as “

1(’) s l~sink(h– ]’1) (36)

The impedance iathen found by using this current, and the integro-differentialrepresentationfor the electric
field (33), in the stationary (first order corrections to the currentdo not contribute) EMF representation[6]

1z. –—Zn=
/

E.@V
I’(o) ~–

Noting that the integril of a Gaussianrandom process is a Gaussianrandom variable [17]we find

(37)

(38)

where again the antennaohmic resistanceia R and the lo_c+lreactance ia (we are ignoring quasiataticimages
in the cavity walls)

+~ 1
27TSi112(kh) [ {

2 Si(kh) + SiIl (2kh) 2Cin (kh) – Cin (2kh) – ;
}

– cos (2kh) {Si (2kh) – 2 Si (kh)} 1–:kh

(39)

and Si (z), Cin(z) are the sine and cosine integrals. The variance of the stochastic integral appearingin the
impedance representation(37) ia

A small error ia made (mostly in the reactance) if we set ~ ~ k in Unotfor all valuea of a (this approx-
imation ia consistent with the previously discussed truncation of the series in the rzmge of the resonant
modes). If & is retained in Vnot, it can be shown in the overmoded limit a >> 1, that the correct to-

%2. cot (kh) + ~ [2Si (2kh) + sin (2kh) {–2 + 2Cin (2kh) – Cin (4kh)}talantenna reactance [6] Xi. = – Zm

8



– cos (2kh) {Si (4kh) -2 Si(2kh)}] /sin2(kh) is produced ratherthen the valueX, that is obtained when the
apprczdmation~ + k is invoke~ at low frequenciesthese expressionsbecome..thesam% even for kh = 7r/2,
where the dominant leading term of the reactance vanishes, the error is X % 64 ohms versus the correct
x“,. %43 ohms. The result of the replacement kn a k is

27rQ (iw2/Q)d/W:
z

()
;n~I&ix+&d~ ~ w2(l+~/Q)–w;34z

n

(41)

surprisingly,the same result we had previously for the short antenna, except that the radiation resistance
&d is now the correct bee space value for the electricallylonger entenna [6], given by

(47r/?70)Si112(kh) &ad = 2Cm (2kh) + sin2kh [Si(4kh) – 2Si (2kh)] – cos 2kh [Cin(4kh) – 2Cin (2kh)] (42)

Thus the quantity Zi. = (Zin – Z) /.&=d horn the electrically short antenna theory is approximately the
ssme for electricallylonger antennss.

7 MONOPOLE ANTENNA AND WWL BEHA~OR

A previous paper [16] has shown that the correlation dyad for the field is proportional to the imaginary
part of the dyadic Green’s function. Thus in a local vicini~ of the cavity boundary (nesr the wall mounted
monopole antenna) at 2 = O, we can use the half space dyadic Green’s function to obtain the correlation
function transitionnear the cavity wall. The result is

(43)

Using this correlationfunction, it is easy to show [1]that the fipedance of a w~-mounted monopole ~ heJf
that of the dipole. Thus, again the qusnti~ z~~= (Zin – Z) /&~ for the monopole is the same as for the
dipole (smnning &d is taken to be the monopole free space radiation resistance), end the comparisons
with experiment,made above, are justfied.

It is interestingthat the known 3 dB wall enhancementof the normal electric field [22],and its transition
into the cavity volume are representedby this half space correlation function

(44)

Figures 10 through 12 show a mode stirred chamber experiment and resultsverifying the presence of this
wall enhancementin the undermodedregion. The normal electricfield distributionon the wall is 3 dB higher
than in the volume of the cavi~ (this is borne out for the field ss a function of frequency in Figure 11, and

oximately for the field at the resonant mode frequenciesin Figure 12).appr

8 POWER BALANCE

Now that the usefulnessof the electrically short antenna theory has been demonstrated, we return to the
electrically short antenna and develop a practically useful simplifiedmodel.

9
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We breakup the field at the antenna& into the wirnof a reflected part I@ and a part E:ad radiated
as if in free space. The impedance components of the short dipole me correspondingly broken into the sims

% = -&ad+%.11

and

Xin= x + xw.u

The quanti~ && is the free space radiation resistance associated

,,

(45)

(46)
.,

with the field E;ad and X is the local
reactanceassociatedwith the quasistaticpert of the field EJd. The quantitiesl&=U and XWalrare associated
with the reflected field from the cavi~ wall E~f. The wall impedance ZWaU= &au - iXWaZlcan be written
in terms of the received voltage,at the dipole due to the reflected field V,ef N -hE~f

(47)

wherethe receivedvoltage has been determinedfrom the effectiveheight (the positive referenceof the voltage
is on the positive z arm of the antenna) of the short dipole, qnd the mean energy density in the cavity is

,,,

U= :eof]Ez12)v

where the subscript V denotes volume average. Now using’the definitionof cavity quality factor
,-

Wvu
Q=T

in

with the averagepower into the antenna (the dissipated power) given by

& =;% II(0)[2

we obtain I

(48)

(49)

(50)

(51)

Identi&ing the radiation resistance of a short”dipole in free space &~ (2) in this expression, using the
definition of a (15), zmd using lower case impedances to denote the quantities T~.u = lL.u/&& and
Zwazz= xW~I/&ad (note that this scaled reactance is really the same as Zin, since Z;n was defied with the
local reactsace subtracted out), we ihdly obtain

I

rw~l = r~n–“1 = ++Jx! (52)

10



x~all = CJzT (53)

where

re.=;(.%;
IEZ12~

re,=@z;
1.?12~

(54)

(55)

8.1 Extreme Values

The quantities T and ~ in (52) zrnd(53) describe the fluctuation of the real end imaginary parts of the
reflected field at the antennalocation normalizedby the mean cavi~ field. For the presentwe assumeT and
~ have normalized Gaussian’densitieswith zero mean (this assumption is refined in the next subsection).
To obtain an extreme value curve for the impedance variation we could tske these raudom variablesto be
tied at, say, the three sigma point MO = 3 of the underlfig reeJand imaginary Gaussian distributions.
It is interestingto note that if the cavity field is viewed as a three dimensional standing wave in the

~ fkequency range of the fundamental cavity modes, then the maximum-to-mean-ratio of the
field is eight-t-one, correspondingto the value MO= 2fi; a vslue that is not very diierent from the
three sigma value M. = 3; these extreme results may therefore be useful at lower frequencies
than anticipated. Replacing T and ~ with this vslue end solving the quachatic equation gives

The dashedcirclesin Figures1 through 3.meplots of thesi reatits. Thae *eme c~~e.s provide a re~onable
containment of the experimental impedsmcevariations. The radiation resistsmceof the 15 GHz monopole
wss taken as the nominal 36 ohm value.

The extremevalues of the real and imaginaryparts on this circle can be easily found as

1.wdd./(l+&4y., (59)

The highly undermoded limit is 1/(2 + @/a) < r;. < (2+ M#/a) and 2 lz~~tl <2 + M/cY. The ~g~y
overmoded limit is 1—Mo/@ < ri~ < l+Mo/@ md IxwauI < Mo/@j thus giving rin ~ 1 ~d XWUU+ 0.

11
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8.2 Density

The distribution of input resistancegenerated by the power bakmce results,using the normalized Gaussisn
assumption for the normalized reflected field in (52), .is shown as the dotted curves in Figures 13 and 14.
The extreme values are representativebut the midrange distribution is not even close to the experimental
or simulationresults. Using the modal series field representationwe can generate the actual distributions
for r and ~, from which we construct more accurate density function approximations. Taking 1(0) to be
real and positive (this choice is to be noted when interpretingthe real and imaginaryparts of the reflected
field) we fid . .

The fist term, which correspondsto the total normalizedfield at the antenna, has a positive real part. The
second term, which corresponds to the normalized radiated field at the antenna, is negative real. Note that
the local quasistaticnormalizedfieldhas been subtractedfrom eachterm in the dii7erence.In the undermoded
limit CY<<1 the first term is imaginary except in the n&row frequency band about the resonances. The
real part is thus skewedtoward negative values. Thus we try taking the asymmetric Gaussian

2–P(cY)e_.2/2, _w<T”<o
“a

(61)

as a fit to the density function of the real part of the normalizedscattered field. If we apply the result that
(%)” = (%)7+1 we can determinethe Eunctiofiof a as

p(a) = 1 -1/ ~=+ e2”erfc (4X)] (62)

The function p (cE)approaches 2CYas CY~ O and appro~es 1 as ,CY+ CO. Figures 15 and 16 show a
comparison of the distributionsfor the real and ima- parts of the normalized reflected field obtained
from Monte Carlo simulationsof the modal seriesrepresentation(solid curves), and the asymmetric (short
dashed curve) and &mmetric (dotted curve) Gaussiandistributions

m-;P(a)erfc(T/@ ,o<T-<m

(63)

(64)

I
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Figure 15 used 500 modeq 100 modes at each end of the intervalare beyond the sampled frequency range.
Figure 16 used 1000 modes; 200 modes at each end of the intervalare beyond the sampled frequency range.
The agreementis reasonablygood. The “kink” discrepancyin Figure 15 is causedby the discontinti~ of the
density function (61) at 7 = O. The singlemode approximate distributionF (Tin) (20) can be transformedby

means of the quadratic relation r~~= (-+~)2/ (4a) to a distribution of normalized real scattered
field, for smallvaluesof r in the undermoded limit

4“JZ,(J77Z?+.),,,,<<I,CY<<IF(T)%l–; (65) ‘

This simpleapproximate distributionindicates how the “kink” should be interpolated as shown by the long
dashed curve in Figure 15. The short dashed curvesin Figures 13 and 14 show the improvementin the power
balance distributionsby use of this asymmetric Gaussiandistribution (representingthe limited bandwidth
of the resonances). The long dashed curve in Figure 13 showsthe singlemode approximate distribution (20)
at the “kink” discrepancy.

The exponential decays of the density functions extracted in the asymptotic analysesare all reproduced
by the power balance results. One might be tempted to use the asymmetrical Gaussian distribution (63)
to refine the extreme curves (56) and (57), instead of basing these on the symmetrical three sigma point ‘
M. =3. However, when the distributionsare over-sampledin frequency, such that the resonances are fully
resolved (for example the 220 MHz data), the extreme valuesmust be determinedhorn the confidence levels
associatedwith the numberof independentmodes containedwithin the frequency sweep,ss discussedin (24).
Thus, the use of the symmetricalestimate, is appropriate for the extremes, when the data is over-sampled
in frequency, but it is not appropriate for the midrange distribution.

9 CONCLUSIONS

The input impedance of linesr antennasinsidehigh Q, electricallylarge cavities,has been investigatedthe
reticallyand experimentally.Monte Carlo simulationsbased on a modal seriesrepresentation,with statistical

‘ estimatesfor modal spacing and eigenfunctionamplitudes,are found to agreewith measurementsin a mode
stirredchamber cavity. The parameter@ = k3V/(27rQ),equal to the ratio of modal width to modal spacing,
determines the magnitude of the impedance variation the undermoded limit (separated, distinct modal
spectra) CY<<1 resultsin large variatio~ the overmoded limit (many overlappingmodes) a >>1 results
in small variations. Asymptotic analysis of the modal seriesyields formulas for the extreme values of the
impedance. The modal seriesfor an electricallyshort antenna has been shown to apprmimately represent
resonant dipoles and wall mounted monopoles, provided the local impedance and free space radiation re-
sistance parametersare appropriately modified the half space correlation function used for the monopole
treatmentwas shown to representthe known wall 3 dB normal field enhancement.A simplifiedmodel based
on balance of power givespractically usefulsimpleformulasfor the impedance distributionsand the extreme
values.
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.Figure 1

,’
,, {.

F@ ohm Smith chart for input impedance of monopole at 220 MHz (as 0.0609) with 10 MHz
sweep. ‘%ounding” power balance result comparison. Time dependence on the experimentedSmith charts
is @“d.
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Figure 2: F& ohm Smithchart of input impedance of monopole at 920 MHz (a = 2.16) with 1 MHz sweep.
“Bounding” power balance result comparison.
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Figure 3 Fifty ohm Smith chart of input “impedance
sweep. “Bounding” power balance result comparison.

of monopole at 15 GE(z (a = 1206.7) with 10 MHz
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Figure 4 Energy spectra appearancewhen the cavi~ is overrnodeda >>1.
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Figure 5: Energy spectra appearancewhen the cavity is undefioded a <<1.
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Figure R Normalizedinput resistancedistributionhorn simulationsand experimentat 920 MHz (a % 2.16).
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Figure 8 Comparison of asymptotic formulas, simulation,and experimentat 220 MHz with 10 MHz sweep.

23



.- -. . .—. —

“~ “=@= MSC Data F=920MHz 1MHz span Rin/46 ohms
--- Random Mode Series (Uniform SPaCin9)

80

20

-.

Asvmt)totic Formula (Sincile Resonant Mode) I . I
Asymptotic Formula (Be&we

. .

01 I– ---” I 1

0.01 2 3 4 56780.1 2 3456781 2 3 4567810

Rin/Rrad

Figure 9: Comparison of asymptotic formulas, simulation,’and experiment at 920 MHz with 1 MHz sweep.

24



,

r -.
IIII
II
I1

&

.

n/ Mode Stirred Chamber Wall

.,

,

,

~

I

I

I
!
,
I

I
j

\
I
t

i
j

i

~

[

—--- m“. - -.,. ,. ,, , ....... ,. .,, ,-.-.<..<,,,..,,, ..,..., . ----77m7-,-- T7wr--7.-

High Impedance
Carbon Line

\

HP3478A
fl---

0’
A Multmeter

,@+----*-.--+-#
-..*U’

,<@
s \.- 1

I
Waveguide below cutoff

11 I

!-I

k
61.5”

Figure 10: Drawing of 3 d13wall enhancementfield measurementat 220 MHz using dipole probe.

25



— ...—. —..—. .

r60’ “

40

20

0

.100 I

— En2(dB#/m2) at 2.7inches inches from wall

-----2.7” data less 3dB
80 — — --En2( cjBv2/m2)at 118.5 inches from wall

-.
.,

,,

.

-30
EF?.SW 2Jlnchcs.qda
EFP-SWP l181nchts.QDA

-20 -lo .
En2(dBv2/m2)

o 10” ‘ 20

EFPmsrJarccmpukOn.qpc

Fiewe 11: Electric field distribution from two dipole probea, one 2.7 inches from wall ~d’one 118.5 inches
fi~m wall, showing 3 dB wall enhancement.
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Figure 13 Normalizedinput resistancedistributionhorn simulation,power balance (the bandwidth modiii-
cation curve uses the asymmetricreflected field distribution) and experimentat 220 MHz.
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Figure 14 Normalizedinput resistsmcedistributionfrom simulation,power balance (the bandwidth modiii-
cation curve uses the asymmetricreflected field distribution) and experiment at 920 MHz.
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