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Abstract

This paper presents models and measurements of antenna input impedance in resonant cavities at high
frequencies. The behavior of input impedance is useful in determining the transmission and reception
characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are
presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as
well as the overmoded case (modes with overlapping spectra). A modal series is constructed and analyzed
to determine the impedance statistical distribution. Both electrically small as well as electrically longer
resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity
are compared with calculations. Finally a method based on power arguments is given, yielding simple
formulas for the impedance distribution.

1 INTRODUCTION

This paper constructs models for the input impedance Z;, of linear antennas in an electrically large cavity
[1). Cases where modes have overlapping spectra, and the antenna impedance approaches the free space
value (2], as well as separate discrete spectra [3], [4] are both considered in this statistical treatment. The
behavior of the impedance and its extreme values are useful in determining the transmission and reception
characteristics of an antenna (as well as the transmission characteristics of certain apertures) and practical
bounds for these quantities. An electrically short center driven dipole is treated first by means of a modal
series for the cavity field. The statistical properties of this high-frequency cavity field are introduced from
which distributions for the impedance are extracted by means of Monte Carlo simulation and asymptotic
analysis. These are compared to measurements in a mode stirred chamber. It-is then shown how these
results apply to an electrically longer resonant dipole and a wall-mounted monopole antenna. The known
enhancement of the field near the cavity wall is shown to correspond to the behavior of the field correlation
function, which is used in the treatment of the monopole antenna. Finally, a simplified approach using
conservation of power is carried out that yields practically useful formulas for the impedance distributions
and extreme values. ’ .

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.
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2 ELECTRICALLY SHORT ANTENNA

Using a modal series for the cavity field {4], [5] with time dependence e‘""t the input 1mpeda.nce of an
electrically short dipole aligned with the z axis is

27rQ) (iw?/Q) w? fw?

where R,.q4 is the antenna radiation resistance in free space, which for a short dipole of length 2h, with
triangular current distribution, is [6]

o 2
Ryoa ~ o (kh) 2)

The quantity 7y ~ 1207 ohms is the impedance of free space and k£ = w/c is the wavenumber (c is the
vacuum velocity of light). The quantity Z = R — 72X is the local impedance of the antenna, consisting of
the ohmic resistance R and local reactance X (this includes the quasistatic part of the cavity summation),
which is approximately capacitive 1/ (wC) for a short dipole [6]

2weoh V
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where the expa.nsion‘pa.rameter is

Q.=0-2(1+1n2) (4)

the antenna fatness parameter is Q@ = 2In(2h/a), and a is the dipole radius. The cavity volume is V, its
quality factor is @, and the cavity vector potential eigenfunctions are 4,,, normalized such that [4]

1
T,—fVA.,,-A,,d}fﬂ . (5)

3 STATISTICS OF CAVITY FIELD

This paper is' concerned with électrically large, complex cavities, for whicil a statistical description of the
modes in (1) becomes applicable [7], (8], [9], [10], {11]. The cavity eigenvalues (resonant frequencies) w,, have
spacings that can be described by a slowly varying mean (Awy,) times a random variable s

Ay = wp g — n = (Awn) s o (6)

where the asymptotic formula for the mean is [12], [13]

(Awy) ~ w23/ (wa,) , Wy, = ©O (7

The probability density function for the normalized spacing s is Poisson (exponential) when the cavity
geometry is simple (e.g., separable, where eigenvalue degeneracy occurs frequently) [11], [12]
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fFs)=e*,0<s<00 8)

and is Rayleigh (Wigner) when the cavity is complex [10], [12]

¥ (s)= -12:33""2"/ 4,0<s<0 (9)

Complex geometry is typical of applications and thus the Rayleigh spacing is more frequently encountered.
Constant spacing

s=1 ' (10)

is also useful to study because it gives similar results for the impedance as does the Rayleigh spacing, but is
simple enough that asymptotic analysis of the modal series can be carried out.

The cavity eigenfunctions are taken to be 1sotrop1c (all three components have similar statistics) with
Gaussian density [7], [11]

¢ =V34n: (11)
£ (€)= a=eC12 (12)
4 \/‘2—7;
which follows the chosen normalization [7]
3 [ Mfan (A= [ PO =1 (13)

An argument in support of the Gaussian nature of the eigenfunctions, relates to the ray description of
these eigenfunctions, where the ray contributions to the modal field at an observation point consist of many
separate returns from the complex cavity boundary that are uncorrelated [11], [7] Experiments on cavities
with smooth walls have shown that deviations from this simple density do arise and can be included as
contributions corresponding to periodic ray trajectories {11}, [14], [15].

The correlation function for the eigenfunction components is different than that for scalar wavefunctions
[11} and is given by [2], [16]

Pz (211 22) =

(Anz (Zl) Ar (22)) _ ?_ 1 6%\ sin [kn (Zl - 22)]
(42, (1)) (42, (z2)) 2 (1 2 6z 2) kn (21— 22) - 4

where k, = wy/c.




4 EXPERIMENTS AND SIMULATIONS
The parameter that describes the degree of spectral overlap is
‘a=kV/(21Q) (15)

This parameter is the ratio of the energy stored in the cavity modes over a narrow spectral bandwidth
(containing many complete modes) to the same energy if the modal amplitudes are fixed at the average peak
level. If the cavity is undermoded (separate discrete modal spectra) o << 1. If the cavity is overmoded
(many overlapping modes) & >> 1. Figures 1 through 3 show Smith charts for the input impedance of near
resonant monopoles in the wall of & mode stirred chamber for the undermoded through overmoded range.

The mode stirred chamber (37 ft x 23 ft x 13 ft) has a volume of V = 313 m3. The cavity is not simply a
rectangular box, since a mode stirrer was present in the chamber, but was not moved during the frequency
sweeps that generated the data. The quality factor of the chamber was determined to be @ = 80,000 by
examining the 3 dB width of isolated modes at 220 MHz; at 920 MHz it was estimated from the 220 MHz
value, by the scaling +/w, to be approximately Q = 165, 000; at 15 GHz it was taken as the experimental value
1,280,000. The antennas were near resonant wall mounted monopoles. The dimensions of the monopoles
were 2a = 0.102 in, k ~ 12.953 in at 220 MHz, h ~ 2.97 in at 920 MHz, and 2a = 1.51 mm with h ~ 4.325
mm at 15 GHz.

Figures 4 and 5 illustrate the behavior of the spectra for the two limits of . Figures 6 and 7 show
comparisons of the monopole input resistance with Monte Carlo simulation of the series

Zin = Tin — %in = (Zin — Z) [Rraa = (%) ; o _:‘:// ((223))) —rn 342, (r) (16)

where we have approximated the summand (Q and (Aw,) are approximated as constant also) since we are
including only those modes near the observation range of w values captured in the figures (the range of
included modes 7, contains a range of wy, that is slightly larger than the w range so that negligible error
is incurred in this approximation). The simulations were done with all three types of eigenvalue spacings.
The agreement with the experimental results is good; although there is some small variation with realization
of the random numbers, the Rayleigh and uniform spacmg results are in slightly better agreement with
measurements than the Poisson spacing. ,

The near resonant monopoles in the experiment had nearly zero free space reactance (except the 920 MHz
antenna which had the experimentally determined value §8.5 ohms). The experimentally determined free
space value of the radiation resistances were 44 ohms at 220 MHz and 46 ohms at 920 MHz. The frequency
span was 10 MHz with 4800 frequency points in the 220 MHz experiment; the simulations used 200 modes
with 1000 frequency points.. The frequency span was 1 MHz with 801 frequency points in the 920 MHz
experiment; the simulations used 400 modes with 1000 frequency points. The frequency span was 10 MHz
also with 801 frequency points in the 15 GHz experiment.

5 ASYMPTOTIC BEHAVIORS -

Using the modal series it can be shown that the frequency average (taken over a narrow band, but including
many complete modal spectra) of the normalized input impedance approaches unity [1]

1 [
(2in), = o= /w i Zindw — 1 n



It can also be shown in the overmoded limit that by replacing the modal sum by an integral (inserting
dwy,/ (Awy,) in the summand) the impedance approaches unity [1]

Zimn—1l,a— 00 (18)

In the next two subsections the uniformly spaced modal series is used to estimate extreme behaviors of the
impedance.

5.1 TUniform Spacing, Single Mode

The undermoded limit o << 1 has separated, discrete, spectra. The largest values of the input resistance and
reactance in this region occur when w is near a resonance. Thus we can consider a single mode of the series
(the closest mode to the observation frequency) and estimate the extreme statistics by regarding w —~ wy,
to be a random variable with uniform density between = (Aw,) /2 (for typically used uniform frequency
sampling). The distribution function, derived from the ratio of independent random variables [17], for this
case is ‘

Flrin)=1— /Too‘f (r)dr~1+ ;—J;-\/r,-na/ (271')6"""“"/4 [Ko (rince/4) — K1 (rine/4)] , Tin >> 0, << 1
) (19)

where the identity (18] [~ e“’”‘/——x-%—-_;)v = e**/2 K (va/2) has been used and Kj (), K; (z) are the modified

Bessel functions. Figures 8 and 9 show this result (long dashed curves) compared to measurements and Monte
Carlo simulations of the uniformly spaced modal series (« is too large in Figure 9 for this result to be valid
over any substantial range of r;,). Over most of the valid range (19) can be simplified to

2 / 2a
F(Tin) ~1- ; g l/a SO T >> o (20)

However near the upper limit of 75, the corresponding density function exhibits exponential behavior that
allows one to establish practical upper bounds for the resistance values

e—‘r,'na/ 2

F(rin) = @, Tipe >>1 (21)

TTin
The normalized reactance also exhibits exponential behavior near the upper limit (an averaging method [19)
can be used to give a more uniformly valid expression) [1]

a/2

—[zinje .
= Iminle ) [Tinle>>1 (22)

f (xin) =~

which shows the extreme reactance magnitude is approximately half the extreme resistance.

The number of independent samples in a frequency sweep is dependent on the number of modes spanned.
For example at 220 MHz there are only 141 modes in the frequency sweep even though there are many more
frequencies sampled. If, for @ << 1, the frequency sweep is sufficiently fine to resolve the spectral peaks
(over-sampling in frequency) then the density function of the peaks is of interest. Thus, near the upper limit




of 7, we can set w = w, and find the single mode dens1ty function for the peak values (the square of a

Gaussian random variable)
—Tinc/2 .
f(rin) = ,/ T e 2 Tne>> 1 (23)

The exponential behavior in (23) is the same as (21). The distribution function corresponding to (23) is
F (rin) = exf ( rina/Z) : (24)

where erf (z) is the error function, and the number of independent samples corresponds to the number of
modes contained in the frequency sweep.

5.2 Uniform Spacing, Between Modes

The smallest values of the input resistance for & << 1 occur when w is between modes. Taking the
frequency to be exactly between modes of the uniformly spaced series, the modal terms can be taken in
pairs about the observation frequency, each pair having a simple exponential distribution. The infinite
summation requires an infinite sequence of convolutions to be performed to obtain the density function
[17]. Using the Laplace transform to convert the convolutions to an infinite product, and using the identity

[20] TTeey [1 —m] = Wsm TVETT) to evaluate the product, the density can be found by inverse

sin(ma,
transform of the resulting function for frequency samples between modes. The integral of the density function
is thus the d15tr1but10n

w2r;
F('rm) = FX ( 8a") (25)
where from the residue method
F)=1- e—x4a?/m® oo (@) 4 Z (-1)™ 2m+1 o~om )Py 26)

(2m + 1)% + 402 /72

An alternative representation for the density functmn that converges rapxdly for x — 0, can a.lso be obtained

from the inverse transform using the identity [21] —2=e e~ /@) = L c"';’g eSte—a\/' ds (although it is

difficult to integrate to obtain the distribution function) f (rin) = fy (7%rin/ (8c)) 72/ (8c)

()= e~ x4 /7% cosh () \/— E =1D)™ (m+1/2) e—(m+1/2)*7%/ (4x) (27)

Figures 8 and 9 show this distribution function (short dashed curves) compared to measurements and Monte
Carlo Simulations (this result describes the entire distribution in Figure 9 since the placement of w is not
critical when the modes are overlapping and « is of order unity).

Using the second representatmn (27) we see that the dens1ty function exhibits exponential decay for very

small 7;,
f (rin) ~ cosh () ,%e—a(ﬁn+1/ﬂn)/2  Tin << @ (28)
n



which again allows one to establish practical lower bounds for the input resistance. For o << 1, the
arin [2 term in the exponential can be dropped, and (28) can be integrated to give the distribution function

F (rin) = 2erfc [\ /af (27‘,-,,)] , where erfc(z) is the complementary error function. The number of independent

samples, when we are over-samping in frequency, is again the number of modes spanned in the frequency
sweep.
For o of order unity, the first representation (26) can be used to give

Flrin) ~ % cosh (e) e~ Ten [/ 7t/ (2ed}w/a y Tin — 00, =0 (1) (29)

showing the exponential decay for large 7;,. If we take the overmoded limit & >> 1, from the second
representation (28) we find that the normalized input resistance is Gaussian distributed about the mean of

unity

/a —
f(P,-)N 5;3 apg/z;"'in=1+pr; a— 0 (30)

5.3 Overmoded Limit

By the central limit theorem [17] we expect both components of the impedance to become Gaussian dis-
tributed in the overmoded limit oo >> 1 since many modes are equally contributing to the modal serjes.
Finding the variance of both components thus allows us to write

Zin ~ 1419 —izol’, a>> 1 (31)

where ¢ and ¢’ are independent, normalized, zero mean Gaussians, and the standard deviations are found
to be [1]

T0 =$0=1/\/& (32)
6 ELECTRICALLY LONGER ANTENNA

The preceding analytical and simulation results were based on the assumption of an electrically short dipole,
but the experiments were conducted using near resonant monopole antennas. This conflicting situation will
be resolved in the present and next sections. The integro-differential equation for a center driven linear
antenna inside a cavity can be written as

~Vob(z) =E, ~

o~ o 1+/0) o} , L@ I
gV Zw’ (1+i/Q)— Aﬂz( )/ Az (2)I(2 )dz'+ [( 2z 622)/ '_-——_a2+(z—zl)2 —I(2)

(33)

where the second term is the local quasistatic contribution. The antenna current distribution I (2) is the
unknown. The antenna. is assumed to be thin and thus the local quasistatic term can be thought of as having
the transmission line form




1 62)/ _I(@)d ( 1 32)
R I 34
(+ 2z o ereoay U TEEE)1 )
This term, in addition to the boundary conditions ‘

I(xh)=0 (35)

play a dominant role in determining the distribution of current (at least up to the first resonance). The
leading term of the current can thus be taken as

I(2) =~ Ipsink (b~ |z|) (36)

The impedance is then found by using this current, and the integro-differential representation for the electric
field (33), in the stationary (first order corrections to the current do not contribute) EMF representation (6]

1
Zo=-p J, B2 (37

Noting that the integral of a Gaussian random process is a Gaussian random variable {17] we find

Znmreix+ S (W) (59) SHD0LA 0, @

where again the antenna ohmic resistance is R and the local reactance is (we are ignoring quasistatic images
in the cavity walls)

X~ 27rQe cot ((ch)

7o, 1
27 sin? (kh)

[2 Si (kh) -+ sin (2kh) {2cm (kh)  Cin (2kh) — %} — cos (2kh) {Si (2kh) — 28 (kh)} — %kh]
(39)

and Si (z), Cin(z) are the sine and cosine integrals. The variance of the stochastic integral appearing in the
impedance representation (37) is

1 - fh L 1 82\ sink, (z —2)
ot _ ___ — : - het — Y \EMtm\e ~J) - 7
U = s /_hsmk(h lzl)/_h : ( t 622) e k- )t (@0)
A small error is made (mostly in the reactance) if we set k, — k in UZ® for all values of « (this approx-
imation is consistent with the previously discussed truncation of the series in the range of the resonant
modes). If k, is retained in UZ%, it can be shown in the overmoded limit & >> 1, that the correct to-
tal antenna reactance [6] Xin = —22Q, cot (kh) + 22 [2Si (2kh) + sin (2kR) {—2 + 2Cin (2kh) — Cin (4kh)}



— cos (2kh) {Si (4kh) ~ 2i (2kh)}] / sin® (kh) is produced rather than the value X, that is obtained when the
approximation k,, — k is invoked; at low frequencies these expressions become the same; even for kh = /2,
where the dominant leading term of the reactance vanishes, the error is X ~ 64 ohms versus the correct
Xin =~ 43 ohms, The result of the replacement k, — k is

2rQ\ (w?/Q)w?fwl _ .,
Zim~R—iX + Ryaq ( ) - 3 41
surprisingly, the same result we had previously for the short antenna, except that the radiation resistance
R,0q is now the correct free space value for the electrically longer antenna [6], given by

(47 /1) sin? (kh) Rraq = 2Cin (2kh) -+ sin 2k [Si (4kh) — 25i (2kh)] — cos 2kh [Cin (4kh) — 2Cin (2kR)] (42)

Thus the quantity zi, = (Zin — Z) /Rrea from the electrically short antenna theory is approximately the
same for electrically longer antennas.

7 MONOPOLE ANTENNA AND WALL BEHAVIOR

A previous paper [16] has shown that the correlation dyad for the field is proportional to the imaginary
part of the dyadic Green’s function. Thus in a local vicinity of the cavity boundary (near the wall mounted
monopole antenna) at z = 0, we can use the half space dyadic Green’s function to obtain the correlation
function transition near the cavity wall. The result is

3 1 8%\ [sink, (21 —22) . sinky, (21 + 22)
-1 )
(21, 22) 2 ( k2 022 ky (21 — 22) kn (21 + 22)

Using this correlation function, it is easy to show [1] that the impedance of a wall-mounted monopole is half
that of the dipole. Thus, again the quantity zin = (Zin — Z) /Ryaq for the monopole is the same as for the
dipole (assuming Ryqq is taken to be the monopole free space radiation resistance), and the comparisons
with experiment, made above, are justified.

1t is interesting that the known 3 dB wall enhancement of the normal electric field [22], and its transition
into the cavity volume are represented by this half space correlation function

(43)

= Rgz (z’ z) (44)

u=2kz

|Eno |2 i
<—<|E:l’2l>l=1+g(1 %)5133

Figures 10 through 12 show a mode stirred chamber experiment and results verifying the presence of this
wall enhancement in the undermoded region. The normal electric field distribution on the wall is 3 dB higher
than in the volume of the cavity (this is borne out for the field as a function of frequency in Figure 11, and
approximately for the field at the resonant mode frequencies in Figure 12).

8 POWER BALANCE

Now that the usefulness of the electrically short antenna theory has been demonstrated, we return to the
electrically short antenna and develop a practically useful simplified model.




‘We break up the field at the antenna E, into the sum of a reflected part E7¢f and a part E7°¢ radiated
as if in free space. The impedance components of the short dipole are correspondingly broken into the sums

Ry = -Rrad + Ryt (45)

in =X+ Xwall ) ' (46)

The quantity R..q is the free space radiation resistance associated with the ﬁeld E"“d a.nd X is the local
reactance associated with the quasistatic part of the field E"“d The quantities Ryyq and X,,.y are associated
with the reflected field from the cavity wall E"ef The wall impedance Zy.n = Ruwait — 7 Xwall can be written
in terms of the received voltage at the dipole due to the reﬂected field V... 5~ —hE"e

Fawatt = Vet /1(0) = B J1(0) = — =222 _h/TT GealD (47)

(1),

where the received voltage has been determined from the effective height (the posmve reference of the voltage
is on the positive 2 arm of the antenna) of the short dlpole and the mean energy density in the cavity is-

~U=-§-eo_(|jEz|2)V‘ | (48)

where the subscript V' denotes volume average. Now using the definition of cavity quality factor

wVU -

= 49
e= (49)
with the average power into the antenna (the dissipated power) given by
i
1 2 |
P = £ Bin|10) \ (50)
we obtain
—Eref 2R
Zran = — e [ Bin (51)

\/ (I Ezlz>v g 3V

Identifying the radiation resistance of a short dipole in free space Rroq (2) in this expression, using the
definition of & (15), and using lower case impedances to denote the quantities 7uwei = Ruaii/Rraa and
Zyall = Xwalt/Rrad (note that this scaled reactance is really the same as z;,, since z;, was defined with the
local reactance subtracted out), we finally obtain

Twall =Tin — 1 =Ty/Tin/a ' (52)

10
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Twatl = vV Tin/ (a4 (53)

where

ik S Y Re (B27) (54)

<|Ezl2> v
_ I

(55),

¢ (5)

8.1 Extreme Values

The quantities 7 and ¢ in (52) and (53) describe the fluctuation of the real and imaginary parts of the
reflected field at the antenna location normalized by the mean cavity field. For the present we assume 7 and
¢ have normalized Gaussian'densities with zero mean (this assumption is refined in the next subsection).
To obtain an extreme value curve for the impedance variation we could take these random variables to be
fixed at, say, the three sigma point My = 3 of the underlying real and imaginary Gaussian distributions.
It is interesting to note that if the cavity field is viewed as a three dimensional standing wave in the

. frequency range of the fundamental cavity modes, then the maximum-to-mean-ratio of the

" field is eight-to-one, corresponding to the value Mp = 2/2; a value that is not very different from the
three sigma value Mp = 3; these extreme results may therefore be useful at lower frequencies
than anticipated. Replacing 7 and ¢ with this value and solving the quadratic equation gives

1 1 2
rip =1+ %Mg cos?p+ \[(1+£M§ cos? go) -1 (56)
Twal = £Mosinp/Tin/a (57)

The dashed circles in Figures 1 through 3 are plots of these results. These extreme circles provide a reasonable
containment of the experimental impedance variations. The radiation resistance of the 15 GHz monopole
was taken as the nominal 36 ohm value.

The extreme values of the real and imaginary parts on this circle can be easily found as

1 A 1., 1 ,\?
1+5&M3—\/<1+§ZM§) —1<rin<1+§;M0+\/(1+%-M§) -1 (58)

i |
watt] < \/ (1 + §%Mg) -1 (59)

The highly undermoded limit is 1/ (2 + Mg/c:) < Tin < (2+ MZ/e) and 2|Zuwen| < 2+ Mg/ The highly
overmoded limit is 1—Mp/v/@ < Tin < 1+Mp/+/& and |Zuwaeu| < Mo/+/c, thus giving 75, — 1 and Zyen — 0.

11
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8.2 Density

The distribution of input resistance generated by the power balance results, using the normalized Gaussian
assumption for the normalized reflected field in (52),.is shown as the dotted curves in Figures 13 and 14.
The extreme values are representative but the midrange distribution is not even close to the experimental
or simulation results. Using the modal series field representation we can generate the actual distributions
for 7 and ¢, from which we construct more accurate density function approximations. Taking I (0) to be
real and positive (this choice is to be noted when interpreting the real and imaginary parts of the reflected
field) we find

X 3A%.
—E;e'f —~ Zn,- T(w—wn)/{Awn)tia 1

~1
3AZ, 342,
\/ (I8:1), Vo T eV S oo T

The first term, which corresponds to the total normalized field at the antenna, has a positive real part. The
second term, which corresponds to the normalized radiated field at the antenna, is negative real. Note that
the local quasistatic normalized field has been subtracted from each term in the difference. In the undermoded
limit & << 1 the first term is imaginary except in the narrow frequency band about the resonances. The
real part is thus skewed toward negative values. Thus we try taking the asymmetric Gaussian

(60)

~p(0£) —72/2
Yf('r)~\/2_ﬂ_e ,(0<'r<oo

z______2—p(a)e_,.z/2’_°°<‘7_<0 (61)

Vor

as a fit to the density function of the real part of the normalized scattered field. If we apply the result that
(rin), = {rin), — 1 we can determine the function of  as

p(e) =1—1/ [2v/2a]7 + ¥erfe (vaa)] . (62)

The function p () approaches 2c: as @ — 0 and approaches 1 as o — oco. Figures 15 and 16 show a
comparison of the distributions for the real and imaginary parts of the normalized reflected field obtained
from Monte Carlo simulations of the modal series representation (solid curves), and the asymmetric (short
dashed curve) and symmetric (dotted curve) Gaussian distributions

F(7) ml—%p(a)erfc('r/\/i) ,0<7< 00

~ [1--;-1;(&)] erfc (—r/ﬁ) ,—00<T<0 (63)
FQ=3+3 ﬁ(c/ﬁj,—w<c<m o (64)
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Figure 15 used 500 modes; 100 modes at each end of the interval are beyond the sampled frequency range.
Figure 16 used 1000 modes; 200 modes at each end of the interval are beyond the sampled frequency range.
The agreement is reasonably good. The “kink” discrepancy in Figure 15 is caused by the discontinuity of the
density function (61) at 7 = 0. The single mode approximate distribution F (3,) (20) can be transformed by

means of the quadratic relation ri, = (V72 +4a+ 'r)2 / (4a) to a distribution of normalized real scattered
field, for small values of 7 in the undermoded limit

w

F(r)zl—ie\/g/(\/'r2+4a+'r) Tl <<1l, <<l (65)

This simple approximate distribution indicates how the “kink” should be interpolated as shown by the long
dashed curve in Figure 15. The short dashed curves in Figures 13 and 14 show the improvement in the power
balance distributions by use of this asymmetric Gaussian distribution (representing the limited bandwidth
of the resonances). The long dashed curve in Figure 13 shows the single mode approximate distribution (20)
at the “kink” discrepancy.

The exponential decays of the density functions extracted in the asymptotic analyses are all reproduced
by the power balance results. One might be tempted to use the asymmetrical Gaussian distribution (63)

to refine the extreme curves (56) and (57), instead of basing these on the symmetrical three sigma point -

My = 3. However, when the distributions are over-sampled in frequency, such that the resonances are fully
resolved (for example the 220 MHz data), the extreme values must be determined from the confidence levels
associated with the number of independent modes contained within the frequency sweep, as discussed in (24).
Thus, the use of the symmetrical estimate, is appropriate for the extremes, when the data is over-sampled
in frequency, but it is not appropriate for the midrange distribution.

9 CONCLUSIONS

The input impedance of linear antennas inside high @, electrically large cavities, has been investigated theo-
retically and experimentally. Monte Carlo simulations based on a modal series representation, with statistical
" estimates for modal spacing and eigenfunction amplitudes, are found to agree with measurements in a mode
stirred chamber cavity. The parameter o = k3V/ (27Q), equal to the ratio of modal width to modal spacing,
determines the magnitude of the impedance variations; the undermoded limit (separated, distinct modal
spectra) o << 1 results in large variations; the overmoded limit (many overlapping modes) o >> 1 results
in small variations. Asymptotic analysis of the modal series yields formulas for the extreme values of the
impedance. The modal series for an electrically short antenna has been shown to approximately represent
resonant dipoles and wall mounted monopoles, provided the local impedance and free space radiation re-
sistance parameters are appropriately modified; the half space correlation function used for the monopole
treatment was shown to represent the known wall 3 dB normal field enhancement. A simplified model based
on balance of power gives practically useful simple formulas for the impedance distributions and the extreme
values.
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.Figure 1: Fifty ohm Smith chart for input impedance of monopole at 220 MHz (& ~ 0.0609) with 10 MHz
sweep. “Bounding” power balance result comparison. Time dependence on the experimental Smith charts
is efvt,
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Figure 2: Fifty ohm Smith chart of input impedance of monopole at 920 MHz (& =~ 2.16) with 1 MHz sweep.
“Bounding” power balance result comparison.
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Figure 3: Fifty ohm Smith‘cha.rt of input impedance of monopole at 15 GHz (o ~ 1206.7) with 10 MHz
sweep. “Bounding” power balance result comparison.
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Figure 4: Energy spectra appearance when the cavity is overmoded o >> 1.

19




e —— —_—

undermoded (0<<1)

unity

JUVUUUUUUY

1 1 l | |

()

Figure 5: Energy spectra appearance when the cavity is undermoded o << 1.

20



| ] ! 1 1
80 [~
o
@
0 60
S
[0
a i
40 — -
= MSC Data F=220MHz 10MHz span Rin/44 oles
| === Random Mode Series (Rayleigh Spacing)
20 ==@== Random Mode Series (Uniform Spacing)
== Random Mode Series (Poisson Spacing)
0 T T T T
0.001 0.01 0.1 10 100

1
Rin/ Rrad

~

Figure 6: Normalized input resistance distribution from simulations and experiment at 220 MHz (o =
0.0609).

21




owOmm  MSC Data F=920MHz 1MHz span Rin/46 ohms
== J== Random Mode Sejies (Rayleigh Spacing) |
—@—=_ Random Mode Series (Uniform Spacing)

=== Random Mode Series (Poisson Spacing)

80 ~
= 60 =
c
Q
O
Soem
()

Q- 40 -

20 B

0 T
001 2 3 4567801 2 3 45678 1 2 3 4567810

Rin/ Rrad

Figure 7: Normalized input resistance distribution from simulations and experiment at 920 MHz (c: = 2.16).

22




80

Percent

40

20 -

=@==Random Mode Series (Uniform Spacing)
Asymptotic Formula (Single Resonant Mode)
--ee—m= Asymptotic Formula (Between Mode Uniform

MSC Data F=220MHz 10MHz span Rin/44 ohms

Spacing)

0.001 0.01

| T T L
10 100

1
Rin/ Rrad

Figure 8: Comparison of asymptotic formulas, simulation, and experiment at 220 MHz with 10 MHz sweep.

ot e e o g o g

23

e e e e



== MSC Data F=920MHz 1MHz span Rin/46 ohms
-=@— Random Mode Series (Uniform Spacing)

——- Asymptotic Formula (Single Resonant Mode) ] ]
-——-1 Asymptotic Formula (Between Mode Uniform Spacing)
80 u
- 60 . -
c
o
O
1 =9
Q
Q- 40 —
20 ~
0 T - I B
0.01 2 3 4567801 2 3 45678 1 2 3 4567810

Rin/ Rrad

Figure 9: Compa;rison'of asymptotic formulas, simulation, and experiment at 920 MHz with 1 MHz sweep.

24



High Impedance

Cd

Nws Probe 2.7in
/"—,

Foam Block

Carbon Line —_—
e
\:
~

/ Mode Stirred Chamber Walll

HP3478A
Multmeter

Waveguide below cutoff
T T

61.5"

!

< 118.5"

Figure 10: Drawing of 3 dB wall enhancement field measurement at 220 MHz using dipole probe.

25

e o et et e e o e st e



100

— - - 1 - 5 LAY L™ 7
5 et -
| —E ?(@BvIn) at 2.7inches inches from wall A / ]
= 2.7" data less 3dB ‘.i’
80 — — 2 2, 2 : L
| “TE (dBv‘/m°) at 118.5 inches from wall /
« 60
—
1] ] h
L
g: 5 ; ,
40
20
5 i -
-/ ."
s ——— o
0 : ; N S Sarinili u’ A - ; . .
-30 . =20 -10 . 10 20
2 2, 2
g::%%m:::&a En (dBV l m ) EFP nsar_far comparison.qpc

Figure 11: Electric field distribution from two dipole probes, one 2.7 inches from wall and one 118.5 inches
from wall, showing 3 dB wall enhancement.
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Figure 15: Normalized reflected field from simulation and simple fit at o ~ 0.0609 (220 MHz).
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