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Large-scale optimization and uncertainty analyses are often made feasible through the use
of response surfaces as surrogates for computational models that may not be directly
employable because of prohibitive expense and/or noise properties and/or coupling diffi-
culties in multidisciplinary analysis.

This paper examines the modeling accuracy of piecewise finite-element interpolation,

kriging, and polynomial regression used in conjunction with the Progressive Lattice Sam- -

pling (PLS) incremental design-of-experiments sampling approach. PLS is a paradigm for
sampling a deterministic hypercubic parameter space by placing and incrementally adding
samples in a manner intended to maximally reduce lack of knowledge in the parameter
space. When combined with suitable interpolation methods, PLS is a formulation for pro-
gressive construction of response surface approximations (RSA) in which the RSA are
efficiently upgradable, and upon upgrading, offer convergence information essential in
estimating error introduced by the use of RSA in the problem.

The three PLS-compatible interpolation methods above were examined for performance in
replicating a multimodal analytic test function as measured by several different indicators.
Under relatively sparce sampling low-order polynomial approximations generally per-
formed better than kriging interpolation. However, ultimately for the most dense sampling
tried (PLS Level 7 having 41 samples over the 2-D parameter space), kriging matched the
test function best. Finite-element interpolation (FE) performed almost as well as kriging
under the most dense sampling and generally performed better under sparcer sampling.
Polynomial regression (PR) also performed well, generally improving the fit of global
polynmial RSA to the test function as samples were added. On balance, however, FE and
kriging performed better than PR for the same number of samples, as conformability to
the target function is limited by the orders of the terms in the regression polynomial, and
these cannot be allowed too high or the polynomial can exhibit spurious oscillations away
from the data points. Thus, it appears that PR may be less amenable than are kriging and
FE to fitting general higher-order functions under dense sampling in the PLS framework.

Many more [diverse and higher-dimensional] functions must be tested before more firm
conclusions can be drawn about the relative applicability of these interpolators under PLS.
The process described in the paper provides a framework for future studies using other
interpolation schemes, test functions, and measures of approximation quality.

! Sandiaisa multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
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Abstract

This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regres-
sion used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments
approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incre-
mentally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter
space. When combined with suitable interpolation methods, PLS is a formulation for progressive construc-
tion of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon
upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the
problem. The three interpolation methods tried here are examined for perfomance in replicating an analytic
test function as measured by several different indicators. The process described here provides a framework
for future studies using other interpolation schemes, test functions, and measures of approximation quality.

Introduction

Large-scale optimization and uncertainty analyses are often made feasible through the use
of response surfaces as surrogates for computational models that may not be directly
employable because of prohibitive expense and/or noise properties and/or coupling diffi-
culties in multidisciplinary analysis. Examples of response surface usage to facilitate
large-scale optimization and uncertainty analyses are cited in Romero (1998), Roux et al.
(1996), Unal et al. (1996), and Venter et al. (1996).

For this study it is assumed that: 1) the computer model is expensive to evaluate; 2) the
parameter space is a unit hypercube or can be accurately and inexpensively mapped into
one; 3) the sampled or “target” function is a continuous, deterministic function over the
parameter space; 4) reasonably general, arbitrary target functions are to be fitted; and 5)
approximate response values are desired over the entire parameter space —i.e., for global
optimization or globally mapping inputs to outputs as might occur in sampling the param-
eter space for probabilistic information.

Given these specifications, the Progressive Lattice Sampling (PLS) incremental sampling
design is invoked here that is in some sense optimal in reducing ignorance in the parame-
ter space per each new sample added.” “Progressive” incremental sampling results in
eventual convergence of a compatible response surface approximation to the target func-
tion being approximated. An assessment of the convergence state is essential in quantify-
ing and limiting uncertainties arising from using response surface approximations in

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-AC04-94A1.85000.

TIn this context, reducing lack of knowledge implies a different sampling strategy than does knowledge max-
imization. PLS builds knowledge while reducing knowledge deficit but does not attempt to build specific
or targeted knowledge in the manner of “adaptive” or “targeted” or “directed” sampling, which are used
for efficient knowledge maximization. Thus, the PLS designs select sample locations strictly on geometric
principles such that each new sample is “maximally far” from all other existing samples in the parameter
space so that uniformity of coverage is maximized in the scheme.
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“meta procedures” such as optimization and reliability analysis (Romero, 2000). The pro-
gressivity of PLS is also thought to be globally optimal in that, as samples are added in
attaining each new Lattice Sampling “Level”, all previous samples are fully leveraged
with no redundancy or marginalization, and the spacing of samples throughout the param-
eter space remains maximized at all Levels.

Romero and Bankston (1998) examined the convergence properties of PLS using finite-
element interpolation and found high Level-wise rates of convergence of calculated proba-
bilities as the response surfaces were upgraded from Level to Level. In this paper, polyno-
mial regression and kriging interpolation methods, which are also amenable to upgrading
in incremental PLS, are also examined for performance on one of the test functions (Func-
tion #1) with respect to several different indicators of approximation quality.

Progressive Lattice Sampling “Incremental” Experimental Design

As presented here, the implementation of PLS has changed somewhat since it was first
introduced by Romero and Bankston in 1998, but the essence is still the same.

Figure 1 illustrates the PLS plan in two dimensions. Level 1 consists of three samples
illustratively located as shown. The sample at the center of the parameter space is funda-
mental. Assuming no a priori knowledge of the target function exists, the two other sam-
ples are located at arbitrarily picked mid-edges of the square. If enough is known of the
target function to provide a basis and/or the response surface is to be used for probability/
uncertainty analysis, then the mid-edges of the hypercube are picked that best suit the pre-
siding conditions (Romero, 2000). For the present study there are no asymmetries in the
applicable p.d.f.s, and no previous knowledge of the fitted function is interjected, so the
two mid-edges to be sampled in the figure were arbitrarily selected. In n dimensions, Level
1 requires n+1 samples.

Lattice Sampling Level 2 adds n samples to complete a 2n+1 layout exemplified in 2-D in
the figure. Level 3 superposes a 2" factorial design. Below 5 dimensions this corresponds
to a face-centered central composite design. Level 4 superposes a Box-Behnken design to
arrive at a 3" full factorial design. (In two dimensions, Levels 3 and 4 turn out to be identi-
cal.) Level 5 adds a sub-scaled 2" factorial design as illustrated in the figure. Level 6 adds
the appropriate samples to complete a 5" full factorial design, and Level 7 adds a sub-
scaled 4" full factorial design as shown.

Level 4 requires 81 samples for n=4 dimensions, 243 for n=5, and 729 for n=6. Level 7
requires 41 samples for n=2, 189 for n=3, and 881 for n=4. Though surmised to be an opti-
mally efficient progressive sampling design, PLS becomes increasingly expensive with
dimension and with Level attained. When affordable, PLS provides an efficient manner to,
if not actually achieve convergence of quantities calculated from the response surface
approximations, at least quantitatively estimate approximation-error magnitudes. Pro-
gressing through the first three PLS Levels for such an estimate can be done for n=5
dimensions with 43 samples, for n=7 with 143 samples, and for n=9 with 531 samples.

Some PLS-Compatible Interpolation Schemes

Compatible PLS interpolation schemes to be examined here are kriging, global polyno-
mial interpolation, and piecewise finite-element interpolation.
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Figure 1. 2-D Progressive Lattice Sampling Design.




Kriging is a class of globally smooth function approximation methods developed in the
fields of spatial statistics and geostatistics (Cressie, 1991). In the specific variant of krig-
ing used in this study, the value of the interpolation function is strongly affected by sam-
pled data that are near in the parameter space and weakly affected by data points that are
farther away, according to directional spatial correlation parameters determined by maxi-
mum likelihood estimation. Another characteristic of the kriging method used in this study
is that it reverts to the mean value of the sample data when used in extrapolation outside of
the sampled data set. For more information on the kriging methods used here, see the
works of Sacks et al. (1989), Koehler and Owen (1996), and Giunta and Watson (1998).

“Saturated” global polynomial approximations exactly match the number of aseending
monomials or “terms” in the polynomial (beginning with the constant term) to the number
of sample points in the parameter space, where the sample points are located such that all
monomial coefficients can be accurately resolved. Such saturated polynomials pass
through all sample points exactly. Examples of such approximations are a hyﬂgﬁerplanariE
approximation based on the n+1 sample points in Level 1, a “simple” quadratic ~ approxi-
mation based on the 2n+1 sample points in Level 2, and a full quadratic polynomial hav-
ing 3” terms for Level 4 (and for Level 3 in 2-D).

Though a polynomial of sufficiently high order can always be found to pass through all
data samples in a deterministic parameter space, as the number of data points increases
such saturated polynomial approximations increasingly tend to exhibit oscillation or “wig-
gliness” between the data points. Thus, as more samples are added, these types of approx-
imations may not converge pointwise over the parameter space to the modeled function
even though the approximations are exact at the sample points. Therefore, when working
with global polynomial approximations, the order of the polynomial is generally limited to
quadratic or cubic; and when the number of sample points exceeds the number of terms in
the polynomial, regression is used to determine the monomial coefficients that make the
polynomial best fit the data in a least-squares sense. Accordingly, regression is applied in
the 2-D example below to best fit the 13-sample Level 5 data with a 9-term full quadratic
polynomial and to fit the 25-sample Level 6 data and the 41-sample Level 7 data with a
16-term full cubic polynomial. All monomial terms in these polynomials were retained in
this work, though under some conditions this is not desirable. (Methods such as “stepwise
regression” (Venter et al., 1996) exist to find a quasi-optimal subset of monomials.)

Saturated polynomial approximations are used in the finite-element modeling literature to
represent function behavior on a local scale. Assemblages of these local approximations
provide global approximations with good local conformance properties. Continuous,
piecewise-smooth global approximations result with low-order-polynomial local varia-
tion. Example finite element interpolations are suggested in Figure 1, where Levels 5, 6,
and 7 show parameter space discretizations into triangular and quadnlateral finite ele-
ments of up to quadratic order (Romero et al., 1998). These globally C%continuous
approximations are the only interpolants applied here that do not have continuity of first-
order derivatives over the parameter space. This can inhibit their performance in optimiza-
tion; however this is circumvented in the Finite-Element/Structured-Sampling “FESS”
optimization scheme (Romero, 1999) that has proven to be more robust and efficient than
classical and contemporary methods on a difficult 2-D noisy global optimization problem.

iA hyperplanar response surface is linear in the set of all the input variables {x,}: A{{x;})=ay+ Za
A simple quadratic response surface has the form: f{{x;}) = a5+ Za X+ Eb,xl
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Application Problem

Figure 2 plots the 2-D target function used in this study. This
multimodal function is defined as:

response(pl p2)—[0 87 +0.35 sm(Z PP )][1 55in(1.36)]

¥

on the domain 0< p1, p2<1,

where r = J(p1)*+(p2)*, 0 = atan(;;—f).

Exact values (samples) of this function are obtained at the indi-
cated Lattice points in Figure 1, and the data at the various
Levels is then fitted and interpolated with kriging, saturated
and regression polynomials, and piecewise finite element
methods as applicable. At each Level, two measures of quality :
of the various interpolations are used: 1) average absolute error Figure 2.

= [the sum of the absolute differences between exact and inter-

polated values of the target function at 441 equally space points on a 21x21 square grid
over the domain}/[441]; and 2) calculated probability of exceedence of the 1.0 threshold
plane in Figure 2 by Monte Carlo sampling of the approx1mat1ons 10° times according to
the joint normal probability density function (p.d.f.) described in (Romero et al., 1998).
As explained there, this approximates the integral of the joint p.d.f. over the exceedence
region of the parameter space (shaded portion of the threshold plane) where the function
exceeds the stipulated threshold value. This is representative of a reliability problem. This
metric tests the ability of the approximation to reproduce the shape of the shaded region.
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Results and Discussion

Figure 3 shows reduction of average absolute error for the various interpolation methods
as the Lattice Levels are advanced through. Figure 4 shows convergence of the calculated
probabilities to the “exact” probability of 0.007560 obtained by sampling the exact func-
tion at the 10° points in the parameter space. As in (Romero et al., 1998), behaviors at
thresholds of 0.2, 0.5, and 1.5 were also examined, and are not presented here for lack of
room but will be presented at the conference and are fully considered in the following.
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Only kriging and saturated polynomial approximations are applied at Levels 1, 2, and 3\4
here. At these lower Levels the low-order polynomial approximations generally perform
better than kriging over the five cases studied (global average absolute error and four dif-
ferent exceedence thresholds). Kriging tended to be relatively unstable under sparse sam-
pling (up Level 4). However, as is typical of most numerical systems, no methods tried
here exhibited unbroken monotonic convergence as samples were added. At Levels 5, 6,
and 7, kriging, polynomial regression (PR), and piecewise finite element (FE) interpola-
tions were applied. At Level 5, PR was sometimes superior to FE over the five cases.
Beyond Level 5, FE always performed better. At Level 5, kriging yielded perhaps the best
average performance. At Level 6, FE always performed the best, with PR and kriging trad-
ing second and third over the five cases. Ultimately, at Level 7 kriging performed best,
converging essentially to exact results in all cases. FE performed almost as well at Level 7,
with the performance of PR generally leveling off after Level 6, after which the conform-
ance of the cubic polynomial could not be significantly improved by adding more samples.
Though many more [diverse and higher-dimensional] functions must be tested before
more firm conclusions can be drawn about the relative applicability of these interpolators
under PLS, this paper demonstrates the framework and process for future studies.
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