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ABSTRACT

The topological local cluster (or Schlafli cluster) concept of Marians and Hobbs is used to
detect topologically crystalline regions in models of disordered tetrahedral semiconductors. We
present simple algorithms for detecting both Wells-type shortest circuits and O’Keeffe-type
rings, which can be used to delineate alternative forms of the Schlafli cluster in models.

INTRODUCTION

Fluctuation microscopy experiments have shown that evaporated amorphous silicon and
germanium exhibit a paracrystalline-type structure [1], in which some regions possess the
bonding topology of the crystal, but are strained so that the component atoms do not lie on a
lattice. This discovery was aided by comparison of the fluctuation microscopy data to
simulations from molecular dynamics structures, and has highlighted the need for effective tools
for characterizing medium range order in structural models. To address this need, useful
topological analysis tools for characterizing models have been developed [2-6].

In this paper, we describe how the local cluster (or Schlafli Aster) concept of Ma.rians and
Hobbs [2] can be used to detect paracrystalline regions in models of disordered materials. We
also outline a simple algorithm for detecting these topological clusters.

TOPOLOGICAL REPRESENTATION OF NETWORK STRUCTURES

Because of their periodicity, crystals can be completely defined by the positions of a small
asymmetric unit of atoms and a group of symmetry operators. In principle, the bonding topology
of covalent materials, such as perovskites and zeolites, can also be represented unambiguously
by a graph. Atoms define the graph vertices and bonds define the graph edges. Such a
topological approach has advantages for disordered models because it is insensitive to local
strain and symmetry breaking.

One usefid topological descriptor that is used extensively in zeolite studies is the circuit
symbol [7-9], which is an ordered list of all the shortest closed paths that pass through each
vertex and all the pairwise combinations of that vertex’s first nearest neighbors. If there are N
nearest neighbors, there are N(N-1)/2 distinct sets of circuits. The shortest meaningfid circuit is
of length 3. The circuit symbol itself does not give a unique description of any given topology.
However, when used in conjunction with other topological descriptors such as the coordination
sequence, there is a very high likelihood that graphs with the same descriptors represent the same
topology. The coordination sequence is a list of the number of vertices NPin coordination shell P
around each atom [8-10]. However, coordination sequences are less useful for describing local
topology in amorphous models because they are sensitive to long-range disorder. In zeolite
studies, there are two definitions of a circuit that are commonly used. The Wells-type circuit [7]



is the shortest circuit possible, whereas the O’Keeffe-type circuit [8] is the shortest ring or
fundamental circuit. A fundamental circuit has the property that for any two vertices on the
circuit there is no shorter path between them than the path that lies on the circuit [2]. For the
central vertex and any pair of its neighbors, there may be more than one circuit that satisfies
these criteria.

As pointed out by Marians and Hobbs [2], circuit symbols are potentially usefbl for
characterizing amorphous materials. In particular, it is expected that the paracrystalline regions
in amorphous Si and Ge will have predominantly cubic, or perhaps hexagonal, diamond bonding
topology [1], each of which should have readily identifiable signatures. In zeolite studies, the
circuit descriptor for each nearest-neighbor pair of atoms is represented in the Schlafli notation,
C., where C is the circuit size, and n is the number of circuits of that length [8]. The circuit
symbol is an ordered list of these circuit descriptors. Both the Wells and O’Keeffe forms of the
Schlafli circuit symbol for the cubic diamond structure are given by 62.62.62.62.62.62.This
notation tells us that there are six distinct sets of circuits (since the number of bonded neighbors
is N=4, and N(N- 1)/2=6) and each set contains two 6-circuits. Figure 1a depicts the atoms that lie
on these circuits for the cubic diamond structure. The black circle, labeled 29, is the central
vertex, and the four gray circles are the first nearest neighbors. For the pair 1 and 2, there are two
six-ring circuits that are given by the paths 29, 1, 10, 11, 12,2,29 and 29, 1,25,27,23,2,29.
Both rings have the “chair” conformation and the pair is assigned the symbol 62. The other five
sets of circuits are equivalent. The hexagonal lonsdaleite structure (Figure 1b) has the same
circuit symbol 62.62.62.62.62.62.However, the two six-rings associated with vertex pairs 1 and 2
have the “chair” (27, 1, 10, 11, 12,2, 27) and “boat” (27, 1,25,24,23,2, 27) conformations.
Further, all three sets of 62 circuits involving neighbor number 4 comprise two “boat”
conformation 6-rings. Thus, unlike the cubic structure, the hexagonal structure has two
inequivalent sets of circuits involving two types of ring.

Clearly, the circuit symbol alone is insufficient to distinguish the cubic and hexagonal
topologies. For example, there is no information about the “boat” and “chair” conformations. For
the unfaulted cubic and hexagonal frameworks, the coordination sequences are 4, 12,24,42 .. .
and 4, 12, 25, 44... respectively. The sequences do not resolve until the third shell, and about one
half of the third-shell atoms are not part of the Schlafli cluster. The coordination sequence is
clearly an unsuitable descriptor of local topology. To help circumvent such ambiguities, we
proposed that the topology of the whole cluster of atoms encompassed by the Schlafli circuit

Figure 1. Example ScMaJ!i clusters for(a) the cubic diamond framework, (b) the hexagonal
diamond flonsdaleite) framework, (c)faujasite (FA U). The O ‘Kee#eform of the Schlajli
cluster, of weight 23, is shown. The Wells form, of weight 14, excludes vertices 15–23.
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symbol be considered [6]. We called this cluster the schlafli duster and also proposed that it is
the smallest topologically meaningful crystalline unit of atoms. This definition has the appeal
that the cubic Si Schliifli cluster (Fig. la) is about 9A in diameter, which is about the length scale
at which paracrystalline medium range order in amorphous Si and Ge starts. Connected regions
of identical (or patterns of) Schlafli clusters define a medium range order length scale intrinsic to
the model. Marians and Hobbs [2] had earlier proposed a similar concept, which they called the
local cluster, and Hobbs and co-workers have developed this idea extensively [3-5]. We prefer
the term Schlafli cluster since this makes the connection with the Schliifli circuit symbol clearer.

One simple distinguishing feature of the cubic and hexagonal Schlafli clusters is their weight,
or the number of vertices contained in each cluster. The cubic cluster (Fig. 1a) has a weight of
29, whereas the hexagonal cluster (Fig. 2b) has a weight of 27. However, it emerges that this
weight information is still insufilcient to uniquely identifi the topology of a cluster. For
example, the cubic cluster in Fig. 1a could be deformed slightly so that vertices 21 and 22 are
connected to create two 5-rings. The circuit symbol and weight are unaffected by this new
connection. One way to detect such topological nuances is to examine all the circuits in the
cluster, even those that do not involve the central vertex [3]. The cubic cluster has a total circuit
count of 96 x 6-circuits and 12 x 8-circuits, whereas the hexagonal cluster has a total circuit
count of 90 x 6-circuits and 12 x 8-circuits. Topological changes resulting from any deformation
of the cluster will be readily detected. The above example, where vertices21 and 22 are
connected, generates the circuit count 10 x 5-circuits, 92 x 6-circuits and 10 x 8-circuits.

Figure 1c illustrates the differences between the Schlafli clusters generated by the Wells and
O’Keeffe definitions of circuits for the faujasite framework. There are two 6-circuits passing
through first nearest neighbor vertices 4 and 5. The circuit 1, 4, 7, 8, 9, 5, 1 is an open 6-circuit,
whereas the circuit 1, 4, 10, 2, 11, 5, 1 is formed from two fhsed 4-rings (1, 4, 10, 2, 1 and 1,2,
11, 5, 1). The Wells definition would count both of these 6-circuits, whereas the O’Keeffe
definition would count only the open 6-ring. In this instance, this particular distinction would not
alter the number of atoms in the Schlafli cluster. However the 6-circuit 1, 3, 6, 4, 10, 2, 1 is also
formed from two fused 4-rings. The Wells notation would accept this as a 6-circuit, whereas the
O’Keeffe notation would reject this circuit in favor of the larger 12-ring 1,3, 15, 16, 17, 18, 19,
20, 21, 22, 23, 2, 1. For faujasite, the Wells circuit symbol is 4“4”4”6”6”62with a weight of 14,
whereas the O’Keeffe form is 4.4”4”6”6”12with a weight of 23. In general, for 4-connected
frameworks, the O’Keeffe form of the Schlafli cluster tends to provide the most local topological
information [2]. However, not every nearest neighbor pair will have a fundamental circuit. In
particular, 5- and 6-connected defect atoms, which can occur in molecular dynamics models of
disorder, frequently have undefined fimdamental circuits.

CIRCUIT SYMBOL ALGORITHM

Effective algorithms for determining the coordination sequences [11] and circuit symbols [4,
12] have already been presented in the literature. Here we outline a simpler algorithm for
determining the circuit symbols. Often, amorphous models are provided as a list of atomic
coordinates. The first step is to transform such structures into a bonded graph. Unless one is
careful, determining bonds in large structures can be surprisingly time-consuming. Efficient
algorithms for finding bonds in large structures have been published [13]. Our method for
determining circuits searches the graph using a breadth-first-search strategy. We illustrate these
searches in Figure 2 using a periodic, 2-dimensiona1, 3-connected net for simplicity.
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Figure 2. Diagram illustrating the algorithm for determining circuits in networks. (p)
Breadth-jirst search (p values) centered on atom of interest (black circle). (Q)Breadth-first
search (q values) centered on one of thejirst-nearest neighbor bonded atoms (pay circle O).

We first label each atom by p, the number of its coordination shell around the central vertex:
Choose a central vertex (black circle in Figure 2a). The first shell, p=l, is defined by the
bonded neighbors (gray circles in Figure 2a).
For every vertex in the current shell, visit all the bonded neighbors. If the bonded vertex does
not belong to the previous shell, p- 1, or to the current shell, p, itmust belong to the next
shell. Record the new shell number p+l with each vertex.
Repeat step 2 for the new shell p+l out to a predetermined limiting radius K. Typically,
K=1O.The count of atoms in each shell, NP,is the coordination sequence [11].

Next we find the Wells-type circuits:
Choose one of the N, p=l, nearest neighbor vertices (gray circles in Figure 2b). This vertex is
the starting point i for a second breadth-first search, which generates another set of
coordination shells, q. The first shell, q=l, is defined by the bonded neighbors to thk vertex i,
but excludes the central vertex (black circle). Each vertex in the first shell is assigned apath
weight of unity since there is only one path from the root vertex to each vertex in the first
shell.
Search the first shell for occurrences of any of the other N-1, p=l, first-nearest neighbors. If
found, this bond defines a 3-ring.
For every vertex in the current shell q, visit all the bonded neighbors. If the bonded vertex
does not belong to the previous shell or to the current shell q, it must belong to the next shell.
Record the new shell number q+l with each vertex. Each vertex in shell q+l inherits
additively the path weights from the parent vertices in shell q.
Once complete, shell q+1 is searched for occurrences of any of the other N-1, p=l, vertices.
If ap=l vertex,j, is found, the circuit size is given by SU= (q+l ) + 2, which includes the
central vertex and the two p= 1 neighbors. The number of circuits of this size is given by the
accumulated path weight at vertexj.
Repeat steps 6 and 7 until all of the other N-1, p=l, vertices have been found.
Repeat steps 4 to 8 for all N, P=l ,vertices, until all N(N-1)/2 sets of circuits have been found.

10. Co-mt all&e unique vertices-that define the circuits. This is the weight of the Schlafli cluster.
11. Repeat steps 4 to 9 for each vertex in the Schlafli cluster to determine the total circuit count.

The algorithm for finding O’Keeffe-type rings is almost identical to that for Wells-type
circuits given above. In step 6, there is an additional test conducted at each vertex to see if we
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have reached the aponode of any potential findarnental circuit (that is, the furthest vertex on the
ring from the central vertex). Early in the breadth-first search, except for 3-rings, vertices will
have the property p = q + 1. The first vertex in any path for whichp < q + 1 is the aponode of a
potential fundamental circuit. For a circuit to be a fwdamental circuit, all subsequent vertices
must have the property p + q =pa + q~where pa + qaare the values at the aponode. Vertices ailer
the aponode that do not have this property cannot possibly be on a fundamental circuit and can
be excluded as parent nodes from the breadth first search. The largest fbndarnental circuit is
limited to 2K+1. Not every p=l nearest neighbor pair, ~, necessarily has a fundamental circuit,
even if K is arbitrarily large. Such “open” circuits are usually designated by the symbol ~ [8].

Note that if only the Wells form of the Schlafli cluster is desired, the initial breadth first
search for the p values (Fig. 2a), steps 1–3, may be omitted. We find that in practice, it is
sufficient to use the Wells-type circuit definition when computing the total circuit count of the
Schlafli cluster, even if the Schlafli cluster itself was determined using O’Keeffe-type rings.

Since the circuits C$~Y)and C#i) are equivalent, the circuit-finding algorithm descriloed
above discovers each set of circuits twice. This inefficiency is hard to avoid but can be put to
good use since the additional information provides a simple method for determining the number
of circuits, or circuitjhx, thatpass through each vertex. This provides an additional degree of
topological information that may be usefhl for discriminating ambiguous cases.

Figure 3 shows a hypothetical set of ten 14-circuits (141.) associated with 2 nearest neighbor
vertices, which are the vertices at the top and bottom. The central vertex is the black circle on the
left. The numbers beside each vertex represent the accumulated path weight at that vertex. For
the clockwise circuit (Figure 3, left), the path weight is initially equal to 1. When paths merge,
the new vertex accumulates the path weights additively. In the example, the weight increases
from 1 at the top, to 10 for the vertex at the bottom. Similarly, for the counter-clockwise circuit
(Figure 3, middle), the path weight is equal to 1 at the bottom and accumulates to 10 at the top.
The product of the path weights at each vertex that are found by traversing the circuits in both
directions, gives directly the circuit flux through that vertex (see Figure 3, right).
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Figure 3. Diagram illustrating how the path weights are accrued for a set of hypothetical
14-circuits. When the accumulatedpath weights for the clockwise and counterclockwise
versions of the same circuit are multiplied, the result is the number of circuits that “flow”
through each vertex, or the circuit flux.
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CONCLUSIONS

The local cluster, or Schlafli cluster, concept of Marians and Hobbs [2] is a useful
topological tool for detecting paracrystalline medium range order in models of disordered
tetrahedral semiconductors [6]. Two types of Schlafli cluster can be defined depending on the
definition of a circuit that is used. The Wells-type cluster uses the shortest circuits, whereas the
O’Keeffe-type cluster uses the shortest rings (fimdamental circuits). In general, the O’Keeffe
form of the Schlafli cluster can provide more topological information, but the Wells form is
simpler to implement. For cubic and hexagonal diamond-like frameworks, which are probably
the most important paracrystalline topologies, the two definitions yield identical SchRifli clusters.
We have presented efficient algorithms for deriving the coordination sequence, the Wells- and
O’Keeffe-type circuits, and the circuit flux for a connected graph.
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