
“This submitted manuscript has been
authored by a contractor of the U.S.
Government under Contract No. DE-
AC05960R22464. Accordingly, the
U.S. Government retains a nonexclusive
royalty-free license to publish or
reproduce the published form of this
contribution, or allow others to do so,
for U.S. Government purposes.”

Performance Tuning and Evaluation of a Parallel Community
Climate Model *

John B. Drake+ Steve HammondS Rodney James5 Patrick H. Worleya

Abstract

The Parallel Community Climate Model (PCCM) is a message-passing parallelization of version
2.1 of the Community Climate Model (CCM) developed by researchers at Argonne and Oak Ridge
National Laboratories and at the National Center for Atmospheric Research in the early to mid 1990s. In
preparation for use in the Department of Energy’s Parallel Climate Model (PCM), PCCM has recently
been updated with new physics routines from version 3.2 of the CCM, improvements to the parallel
implementation, and ports to the SGIKray Research T3E and Origin 2000. We describe our experience
in porting and tuning PCCM on these new platforms, evaluating the performance of different parallel
algorithm options and comparing performance between the T3E and Origin 2000.

1 Introduction

The Community Climate Model (CCM) is an atmospheric general circulation model developed at the
National Center for Atmospheric Research (NCAR). Versions of it are used as the atmospheric compo-
nent of both the Department of Energy’s Parallel Climate Model (PCM) and NCAR’s Climate System
Model (CSM). These are both coupled climate models composed of ocean, atmosphere, land and sea
ice component models. The current distributions of CCM, versions 3.2 and higher, can be run on high
end workstations, on serial or shared memory parallel vector processor systems, and on parallel systems
supporting the MPI message-passing interface. The MPI parallel implementation is based on a one-
dimensional decomposition of the computational domain, and is limited to 64 processes for the current
target problem resolution of T42L18, which corresponds to a 128 x 64 computational grid covering the
surface of the sphere and 18 vertical levels.

PCCM2.1 is a parallel implementation of version 2.1 of the CCM developed in the early to mid
1990s for the Department of Energy CHAMMP [3] program by a collaboration of researchers from
Argonne and Oak Ridge National Laboratories and the National Center for Atmospheric Research. It
uses a two-dimensional domain decomposition approach that allows up to 1024 processes to be used for
T42L 18. PCCM2.1 was originally targeted for the Intel Paragon with 1024 processors and the IBM SP2

*The research performed by J. Drake and I? Worley was supported by the Atmospheric and Climate Research Division of the
Office of Science, U.S. Department of Energy under Contract No. DE-AC05960R22464. The research performed by S. Hammond
and R. James was sponsored in part by the Department of Energy Climate Change and Prediction Program and the National Science
Foundation. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes.

tOak Ridge National Laboratory, P.0. Box 2008, Bldg. 6012, Oak Ridge, TN 3783 l-6367 (drakejb@oml.gov)
$National Center for Atmospheric Research, P.O. Box 3000,Boulder, CO 80307-3000 (hammond@ncar.ucar,edu)
BNational Center for Atmospheric Research, P.0. Box 3000,Boulder. CO 80307-3000 (rodney@ucar.edu)
aOak Ridge National Laboratory, P.0. Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367 (worleyph@oml.gov)

1

Oak Ridge National Laboratory is managed by Lockheed Martin
Energy Research Corporation for the United States Department
of Energy under Contract No. DE-AC05-960R22464.

3

with 128 processors. But the code was written to be easily ported to other multiprocessors that support
message-passing paradigms, or to run on machines distributed across a network with PVM [7].

PCCM2.1 was not adopted as the production CCM by NCAR because CCM had reached version 3.0
by the time PCCM2.1 was validated. There were also perceived difficulties in maintaining efficiency on
parallel vector processors when incorporating the code modifications for the two-dimensional decompo-
sition. However, the computational requirements of the new generation of climate models, as constrained
by the parallel platforms currently available to U.S. climatologists, may require the use of large num-
bers of processors in order to achieve the goals of the U.S. Global Change program [lo]. To assess the
potential for performance gains from exploiting additional parallelism in the atmospheric model, PCCM
has been updated to use the same physics routines and numerical methods as the current version of
CCM. As the current version of CCM is also a parallel code, PCCM is no longer a useful name for the
two-dimensional parallelization. We will henceforth refer to the new version of PCCM as CCM/MP-2D.

In this paper, we examine the advantages of using a two-dimensional decomposition over a one-
dimensional decomposition with CCM/MP-2D on the T3E and the Origin 2000. We also compare the
T3E and Origin as platforms for running the code. Fairness is an important issue in these types of
performance studies, and we carefully tuned CCM/MP-2D on the T3E and the Origin 2000 before mak-
ing comparisons. As part of our presentation, we discuss how sensitive performance is to the choice
of parallel algorithm. We also look at scalability and instrumentation data to identify where and why
performance is lost for each problem size and on each platform.

The next section describes the numerical and parallel algorithms used by CCM/MP-2D. Section 3
describes the target platforms. Section 4 describes the methodology used to port and tune the codes.
Section 5 describes CCM/MP-2D performance in detail. Section 7 contains our conclusions.

2 CCM/MP-2D 3.2

CCM3 is the latest version of the community climate model that has been developed at NCAR and pro-
vided to atmospheric scientists for over a decade [2, 8, 91. The vertical and temporal aspects of the
model are represented by finite difference approximations. The spherical harmonic transform (spectral
transform) method is employed to compute the dry dynamics [8, 113. This method computes the spher-
ical harmonic function coefficient representation of the atmospheric state variables by first transform-
ing them from the physical domain (longitude-latitude-vertical) to the Fourier domain (wavenumber-
latitude-vertical) using fast Fourier transforms (FFTs) in the longitude direction. Then the state variables
are transformed from the Fourier to the spectral domains (spectral coefficients - vertical) using Legendre
transforms (LT) in the latitude direction. The set of spectral coefficients is typically truncated in some
fashion to avoid aliasing. Horizontal derivatives and linear terms involving these variables are calculated
and combined to form the dynamical right hand sides in spectral space. These spectral space computa-
tions are independent between spectral coordinates. The results are transformed back into the physical
domain where they are used to update the model variables.

The calculation of nonlinear terms in the equations of motion are carried out on a grid in the physical
domain. A tensor product grid is used, where the latitude coordinates are chosen to be Gauss quadrature
points, as used to approximate the Lengendre transform, and the longitude points are equispaced. The
“physics” computations involve only the vertical column above each longitude-latitude grid point and
are thus numerically independent of each other in the horizontal direction. Trace gases, including water
vapor, are transported by the wind fields using a shape perserving semi-Lagrangian scheme [121 on the
physical grid.

For spectral global circulation models such as CCM3 it is canonical to denote the resolution by the
truncation wave number and the number of vertical levels in the model discretization. For example,
a spectral model that uses a 128 longitude by 64 latitude grid and 18 vertical levels and a triangular
truncation of the spherical harmonic coefficients is called a T42L18 model. The “T” indicates triangular

2

truncation, 42 indicates the maximum Fourier wave number, and the “L” denotes the number of vertical
levels. Resolution T170L18 has 512 longitude by 256 latitude grid and 18 levels.

In the two-dimensional domain decompostion used by CCMMP-2D, the longitude and latitude di-
mensions are decomposed, and the resulting blocks combined to define a decomposition into longitude-
latitude patches, leaving the vertical dimension undecomposed. Two patches are assigned to each proces-
sor, one from the northern hemisphere and its reflection across the equator in the southern hemisphere.
This allows symmetry to be exploited in the Legendre transform. This assignment naturally defines a vir-
tual two-dimensional processor grid, with rows representing common latitude assignments and columns
representing common longitude assignments.

Given this decomposition, the physics computations are independent between processors, and no
interprocessor communication is required. However, much of the physics is related to solar radiation and
there is a significant load imbalance between night and day grid points. To alleviate this, each processor
swaps half of its grid points with the processor in the same row holding grid points that are 180 degrees
away, swapping them back when the physics computations are complete.

The semi-Lagrangian algorithm also uses the physical grid. For each grid point, a trajectory is calcu-
lated back in time, to determine what grid cell to use to interpolate the current values. This calculation is
independent between grid points, but the data needed to calculate the trajectories and to interpolate the
fields may not be local to the processor holding the grid point. The current parallel algorithm fills halo
regions of sufficient thickness around each patch that, once filled, all needed information is local to each
processor. Typically, this only requires communication with nearest neighbors in the logical processor
grid. However, near the poles the halo region for a patch must include the entire polar cap. This requires
communication between all processors assigned patches near the pole, resulting in a load imbalance in
the cost of filling the halo regions between the polar and equatorial processors.

Two different approaches are supported in CCM/MP-2D for computing the FFTs used in the spec-
tral transform method: distributed and transpose. The distributed algorithm computes the FFT using
the given domain decomposition, communicating between processors in the same row to share data and
intermediate results. The transpose algorithm “rotates” the domain decomposition within a processor
row, undecomposing the longitude coordinate, and decomposing over the vertical levels and the differ-
ent fields. Using this scheme, each processor has a set of independent FFTs to calculate. When the
transforms are complete, the rotation is reversed, undecomposing the vertical levels and the fields, and
decomposing over the wavenumber coordinate.

The Legendre transform used in the spectral transform is approximated by Gauss quadrature for
each spectral coefficient. Each processor computes its contributions to these integrals, and a collective
summation of the contributions over each column of processors is used to complete the computation.
The parallel summation algorithm used in the Legendre transform replicates the spectral coefficients
assigned to a given column of processors over all processors in the column. This redundancy results
in duplicate work in spectral space, but allows the inverse Legendre transform to be computed without
further interprocessor communication. Given the relatively small amount of time spent in spectral space
computation, this is often a cost-effective tradeoff.

For more details on the parallel algorithms used in CCM/MP-2D see [4, 61. Parallel algorithm
improvements introduced in CCM/MP-2D not described in these references include support for vendor-
supplied FFT routines and MPI collective communication rotuines for the transpose and collective sum
operations.

3 Platforms

CCM/MP-2D 3.2 has been ported to a number of different platforms, using a number of different
message-passing libraries. In this study we focus on performance using the T3E-900 at the National
Energy Research Scientific Computing Center (NERSC) and a SGI Origin 2000 at Los Alamos National
Laboratory (LANL), each using the vendor-supplied MPI communication libraries. At the time of these

3

.

experiments, these two systems were the most likely candidates for use in production runs of the coupled
climate models by the Department of Energy.

The SGI Origin 2000, henceforth referred to as the “Origin”, is a distributed shared memory (DSM)
parallel system made up of “nodes” consisting of two processors that share a common memory. Nodes
are interconnected via a high-performance, highly-connected but nonuniform access network. Thus,
although all memory is globally accessible, access time varies with the network distance between the
memory and accessing processor. The Origin supports traditional shared memory programming mod-
els, but current experience indicates that the “programming discipline” natural to message-passing is
important for performance, and message-passing is a reasonable approach to using the machine. For
these experiments we used version 6.5 of the IRIX operating system, MPI from version 1.3.0.0 of the
SGI Message Passing Toolkit, and the MipsPro 7.20 Fortran compiler with compilier options -02 -64
-rlOOOO. We also used the FFT routines from the SCSL math library. The particular Origin used in these
experiments is one of the machines in the Advanced Computing Laboratory at LANL that is dedicated to
climate research. It has 128 250-MHz MIPS RlOOOO processors. CCMiMP-2D performance data were
collected in March and April of 1999.

The T3E-900, henceforth referred to as the “T3E”, is a second-generation distributed memory paral-
lel system designed by Cray Research. Each node consists of a single processor/memory pair intercon-
nected via a high-performance, three-dimensional bidirectional torus network. Hardware support exists
for accessing remote memory directly, but experience has shown that message-passing is still the best
programming paradigm to use if high performance is required. For these experiments we used version
2.0.4.46 of the UNICOS/mk operating system, MPI from version 1.3.0-O of the Message Passing Toolkit,
and the Cray CF90 version 3.2.0.0 Fortran compiler with compilier option -0scalar3. We also used the
FFI’ routines from the LIBSCI math library. The NERSC T3E has 644 450-MHZDEC Alpha EV5 RISC
processors. CCM/MP-2D performance data were collected in February and March of 1999.

To provide additional context to the Origin and T3E data, some measurements are also presented for
the following platforms:

l IBM SP3 at Oak Ridge National Laboratory (ORNL). This system has 62 POWER3 2-way SMP
nodes (200 MHz POWER3 with 4MB L2 cache, equivalent to an RS/6000 Model 260). Data was
collected in May and June of 1999 using the ESSL math library and -03 optimization.

l SGI Origin 2000 using 195 MHz processors. This is the same Origin system at LANL described
above prior to being upgraded to 250 MHz processors. Data was collected in May, 1998 using the
SCSL math library and -02 optimization.

l HP/Convex SPP-2000 at the National Center for Supercomputer Applications. This system has
64 180-MHz HP PA-RISC 8000 processors, organzied as 4 16-processor Hypernodes. Data was
collected in May 1998 using the VECLIB math library and +02 optimization.

l 266 MHz Pentium II workstation at ORNL. Data was collected in May 1998 using the Portland
group compilers and -03 optimization.

4 Methodology for Porting and Tuning

CCM/MP-2D has numerous options that can be set to tune performance on a parallel platform. At the
most primitive level is the choice of communication protocol, for example which of the many MPI point-
to-point communication routines to use, and whether to try to overlap communication with computation
or hide latency. Different choices may be appropriate for different phases of the computation, for exam-
ple the best protocol for the physics load balancing algorithm may be different from the best protocol
for the parallel semi-Lagrangian algorithm. At the next level is the choice of parallel algorithm to use

4

to implement the transpose, equivalent to the MPIALLTOALLV command, and the collective summa-
tion, equivalent to the MPIALLREDUCE command. These MPI collective communication commands
are also supported options, but they are not always the best choice. At a higher level is the choice of
distributed versus transpose parallel FFT algorithm.

At the highest level is the aspect ratio of the logical processor grid and the mapping of the logical
processor grid to the real machine. For example, 64 processors can be configured as a 64x1, 32x2,
16x4, etc. logical processor grid, where the first number denotes the number of processors assigned to
compute the parallel FFT, and decompose the longitude direction, while the second denotes the number
of processors assigned to compute the parallel Legendre transform. Different choices also imply different
shaped domain decomposition patches, which will affect the efficiency of the parallel semi-Lagrangian
algorithm.

CCM/MP-2D is a large code with a relatively expensive initialization phase, requiring the input of
large static datasets. In a production run, the initialization cost is unimportant, as the code will run for
days or weeks. However, in a short tuning evaluation run, the initialization phase dominates the runtime,
limiting the number of tests that can be made with the full code. To aid in tuning the performance of
CCM/MP-2D, we used two kernel codes: COMMTEST and PSTSWM.

COMMTEBT tests the performance of exchanging data between two or more processors. For these
experiments we looked at the “peak achievable” rate for swapping data between two processors, using
both unidirectional and bidirectional protocols. The distinguishing feature of this test code is that it uses
the same communication primitive wrappers used in CCM/MP-2D, so that the results are relevant to
what would be seen in the production code. All available message-passing protocols for exchanging data
between two processes were examined, for a large range of message sizes.

PSTSWM is a parallel spectral transform shallow water model [5, 141 that is an accurate represen-
tation of the parallel algorithms used for the dry dynamics in CCM/MP-2D. In particular, the parallel
algorithms were designed and evaluated in PSTSWM first, then ported to CCM/MP-2D. A series of test
suites have been developed for PSTSWM that look at all possible communication protocols for each
of the parallel algorithms used in the spectral transform method. From this data, we identified a small
number of parallel algorithms and implementations to examine in the context of CCM/MP-2D. We do
not currently have a kernel code for the parallel semi-Lagrangian or physics load-balancing algorithms,
however some of the PSTSWM options and the COMMTEST results are relevant to these, and provide
data sufficient to make intelligent decisions.

Note that COMMTEST and PSTSWM cannot determine how the different parallel algorithm options
interact in the full code, nor show the effect of the different aspect ratios. Using the full code we tested
all possible aspect ratios for each of the interesting parallel algorithms and for each total number of
processors. We also looked at two problem sizes: T42L18 and T170L18.

5 CCM/MP=2D Performance

In this section we use the data from the kernel codes to determine performance characteristics of the
target platforms. We also identify a subset of good parallel algorithm options, and discuss how sensitive
performance is to the choices. We then present detailed data on the performance of CCM/MP-2D.

5.1 Single processor performance

CCM/MP-2D has good load balance for a wide range of processor counts. The primary factors of
performance and scalability on a given platform are the floating point computation and interprocessor
communication rates. Unfortunately, it is difficult to use CCM/MP-2D to determine the relevant compu-
tation rates. The computation rate is typically dependent on the problem granularity, and the rate for a
single processor run is unlikely to accurately reflect the performance that would be achieved on a given
node of a parallel run. CCMIMP-2D has only a small number of supported problem resolutions, limiting

5

the investigation of relevant granularities. For a rough comparison of computational rates of the T3E
and the Origin we measured the serial performance of the PSTSWM kernel code for a series of problem
sizes (T42, T85, T170) and for a number of different vertical resolutions (L 1, L2, L3, L16). PSTSWM
computation rates have proven to be good predicters of CCM/MP-2D computation rates for code outside
of the column physics. In a more definitive benchmarking exercise, we would also need a serial column
physics kernel.

Serial MFlopslsecond for problem T42
300, I I I I I I I

~~3-200 +-
origtn-250 +- -
origin-195 .a-

spp2OGa -x-
13e900 -h-
piI- *--

01 I I 1 I I I

1 2 3 16
ievels

Serial MFlODsheCOnd for pmblem T170

250 -

200 -

150 -

100 -

S&I ~flopskecond for problem T66
300 1 I I I I I

Ok. ~~3-200 %+-
-o----* oIlgin-250 +- .

250 - --__ origin-195 a,.. _
--*_

---___
--a

“Pa<% 21

plI-266 W-
200 -

+-----+----+-..A

150 -
----.____

g:-;.$$ 8__. “‘‘.+
A ._._ A---&-:::“.:....___

100 - -.-.~.Z:~.~,-Q

50 -
x -- --m -- -- sx-- _ _ -- --.- __ __ -.--m

01 1 I I I I I I
1 2 3 16

LtW0k

01 1 I I I I I I
1 2 3 16

Levels

Figure 1: Serial PSTSWM MFlop/second rates.

A graphical comparison of PSTSWM serial performance is given in Fig. 1, where Origin and T3E
results are denoted by or igin- 2 5 0 and t3 e9 0 0, respectively. The metric is Mflops/second, where
the MFlop count was measured on a Cray C90, so the results are best interpreted as graphs of normal-
ized inverse time. The results use math libraries where available and the best identified compilers and
compiler options that also work with CCM/MP-2D.

The results that are most interesting for this study are

e Cache effects can be seen in the Origin data, with the smallest granularity case (T42Ll) having
significantly better performance (> 200 MFlops/sec) than the larger granularity cases (< 150
MFlops/sec). Thus there is a potential for improved computational rates as the number of proces-
sors increases.

l The T3E shows less sensitivity to problem granularity, at least over this range of problem sizes.
The T3E computation rate is also between half and two thirds that of the Origin.

6

For comparison, the single processor MFlop rate for CCM/MP-2D when simulating two days at a
resolution of T42L18 is 94 MFlop/sec on the Origin and 122 MFlop/sec on the SP3. The floating point
operation count was calculated on yet a different machine, so these rates are not directly comparable to
the PSTSWM results. However, the primary difference in observed performance between the PSTSWM
and CCM/MP-2D runs is the effect of the many exponential, logarithm, and trigonometric function calls
used in the column physics calculations. Note that this problem size,‘which is the smallest problem size
for which we currently have datasets, is too large to run on a single processor of the T3E at NERSC.

5.2 Peak communication performance

The results in Fig. 2 describe the maximum bandwidth that was observed when exchanging data between
two processors using the COMMTEST kernel and MPI, as well as an estimate of the latency associated
with the protocol that is used to achieve this bandwidth. Both unidirectional and bidirectional bandwidth
results are given, for messages of size 8 Kbytes, 128 KBytes, and 2 MBytes. This is a “not to be ex-
ceeded” performance figure in that multiple logically simultaneous exchanges may contend for shared
resources. However, CCM/MP-2D is only loosely synchronous, and the progress of the processors will
naturally drift to avoid contention for bandwidth. Thus the performance observed in these experiments
may be approachable. We find these tests very useful in identifying differences in communication proto-
cols, but rely more on the PSTSWM experiments described in $5.3 to evaluate communication patterns
that arise in CCMMP-2D. Note that both the Origin and the T3E bandwidth rates increase if the SHMEM
communication library is used instead of MPI [133. However, the current version of CCMMP-2D does
not use SHMEM.

The results of importance here show the relative advantage of the T3E over the Origin in achieveable
bandwidth. The SPP2000 results show how good MPI performance can be in a shared memory archi-
tecture, but these measurements were within a hypernode and do not reflect the bandwidth achieveable
between hypernodes on the SPP2000 architecture. Note that the low latency that can be achieved on the
T3E [l] is not as evident when using the vendor-supplied MPI.

5.3 Parallel algorithm tuning I

The first step in tuning CCM/MP-2D performance is to eliminate the uninteresting tuning options. We
did this in two stages. First, a large number of experiments are run using PSTSWM with one-dimensional
domain decompositions, decomposing solely in longitude (Pxl) or in latitude (1xP) in the physical do-
main. This isolates the individual parallel algorithms for the Legendre and Fourier transforms. The
experiments looked at all supported communication protocols for a number of problem sizes and several
numbers of processors, to identify a set of communication protocols that are good for both large and
small granularity cases. The results for certain of these algorithms can also be used to infer good/bad
protocols for the parallel semi-Lagrangian transport and column physics load balancing algorithms.

Three transpose-based parallel FFI algorithms were examined, each of which employs a data tran-
pose algorithm that is functionally equivalent to MPIALLTOALLV:

l srtrans: sends P - 1 messages using a send-receive protocol to transpose across P processors;

l swtrans: sends P - 1 messages using a swap protocol to transpose across P processors;

a logtrans: sends O(log(P)) messages using a swap protocol to transpose across P processors,

where a swap protocol exchanges data between two processors during each interprocessor communica-
tion request, while a send-receive protocol sends to one processor and receives from another (potentially
different) processor. srtrans, swtrans, and logtrans all use different orderings of interprocessor
communication between processors, and logtrans sends more data than the other two.

Three distributed Legendre transform algorithms were examined, each of which employs a dis-
tributed vector sum algorithm that is functionally equivalent to MPIALLREDUCE:

7

700
Bidirectional Swap Bandwidth (MPI) Unidirectional Swap Bandwidth @API)

I I / 700 I I I

?-------

-0

:
:

:
:

:
1‘

:
1’

spp2Ow o-
t3e9xl +--

~~3-200 .Ci.- -
origin-250 Xc-

spp2000 4-
t3e900 +--

600 - ~~3.200 El- -
p ------__ * origin-250 *-

500 - /
/

E ,’

-iI

4W- /
:

0 I I I

6KB 128KB 2MB 6KB 126KB 2MB
Amount of Data Sent Each Direction Amount of Data Sent Each Direction

bidirectional bandwidth estimated latency unidirectional bandwidth estimated latency
Platform (peak MByte/set) (usedmsg) (peak MByte/set) (usedmsg)

Origin 134
T3E 289

2MByte Message
38
68

106 23
163 30

i

Origin
T3E

Origin
T3E

130
245

46
66

128KByte Message
29
24

8KByte Message
18
25

93 17
134 20

36 12
47 21

Figure 2: Interprocessor Communication Rates.

l exchsum: an exchange-based algorithm that sends log,(P) messages using a swap protocol to
sum across P processors;

l ha1 f sum: a recursive halving-based algorithm that sends 2 log,(P) messages using a swap pro-
tocol to sum across P processors;

l ringsum: a ring-based algorithm that sends P - 1 messages using a send-receive protocol to sum
across P processors.

exchsum sends more data than the other two.
Finally, one distributed m;T was examined:

l . df f t: sends O(log(P)) messages using a swap protocol to calculate FFT distributed across P
processors.

The data generated from these experiments can be viewed at

http://www.epm.ornl.gov/worley/studies/protocol.html

The results relevant to this study are as follows.

8

Origin.
l The choice of communication protocol is important for optimizing performance.

l For large granularity experiments, the best communication protocol for df ft uses a nonblocking
send (MPIISEND), blocking receive (MPI-RECV) protocol that exploits bidirectional commu-
nication and overlaps communication with computation. For small granularity experiments, the
protocol using MPISENDRECV (and not overlapping communication and computation) is best..

l The best communication protocol for ring&m and for the transpose algorithms is either a non-
blocking send, blocking recv protocol that exploi‘ts bidirectional communication, but does not
attempt to hide latency, or the protocol using MPISENDRECV.

l The best communication protocol for ha1 f sum is either the nonblocking send, blocking receive
protocol that is optimal for r ingsum or a protocol that uses explicit handshaking messages and
“ready” sends (MPIJRECV / handshaking logic / MPLRSEND) to more precisely control how
the messages are exchanged.

T3E.
l The choice of communication protocoi is (again) important for optimizing performance.

l ringsum, srtrans and swtrans have the same optimal protocols: the MPISENDRECV-
based protocol or a protocol that uses buffered sends (MPIBSEND) to send all of the outgoing
data first, followed by a sequence of blocking receive calls to receive the incoming data.

l Either the MPISENDRECV or a buffered send, blocking receive protocol is optimal for df f t.

l The hypercube-based algorithms exchsum, half sum, and logtrans have the same optimal
protocols. For small granularity cases either the MPISENDRECV or a buffered send, blocking
receive protocol is optimal. For large granularity cases a nonblocking receive (MPIIRECV),
blocking send (MPISEND) protocol that attempts to hide latency is optimal.

5.4 Parallel algorithm tuning II

The second stage in eliminating uninteresting tuning options is to identify the best transpose FFT al-
gorithms and the best distributed Legendre algorithms, using the optimal communication protocols for
each algorithm, and also comparing against implementations using the MPI collective communication
routines MPIALLTOALLV and MPIALLREDUCE and against a “generic” algorithm, representing a
conservative choice of parallel algorithm and communication protocol that should work on most parallel
systems. Figure 3 describes the results of this comparison in terms of the percentage degradation in
performance from not using the optimal algorithm. 1 The problem sizes were chosen so as to give the
correct granularity for larger problem sizes when used with a two-dimensional domain decomposition.
For example, a transpose FFI using 8 processors to solve a problem size of T21L8 has the same granu-
larity as a transpose FFT and a distributed Legendre transform on a 8 x 8 processor grid when solving a
problem of size T42L 16.

As can be seen from this data, the variation in timings due to the,choice of parallel algorithm is
quite high. On the T3E, the MPIALLTOALLV-based transpose FFT is consistently better than the
alternatives. In contrast, on the Origin swtrans is the best single choice. For the distributed Legendre
transform, ha1 f sum is optimal or near-optimal on both the T3E and the Origin, and MPIALLREDUCE
should never be used.

These experiments are not ideal for evaluating the different parallel algorithms, as they do not ad-
dress the process placement and resource contention that occurs in a two-dimensional decomposition. To

‘measured time for a given algorithm (time) minus the minimum time over all algorithms (min) divided by the minimum time

9

.

0.45
Transpose FFT comparisons on ongin- using MPI
I I I 1 I

0.4 -
gene c 0

to vans + -
mpi-al loallv 9 A

0.35 - srlrans I3 -
swtrans x

0.3 - +

.z 0.25 - +
z=.

.E 0.2 - 0 +

“E
I3 A

z 0.15 -

0.1 -
Y

A
0.05 -

0 -.......... + L ftj_. B $. . @ . . ga_

-4.05 I I I I I I

P=32 P=16 P=6 P=32 P=16 P=8
TiOL16 TlOL16 TZlL6 T21L32 T21L16 T42L16

Transpose FFT comparisons on t3e-903 using MPI Transpose FFT comparisons on t3e-903 using MPI

o$---sq

0.3 -
X

a
0.25 - +

0.2 - 9. +

0.15 - +

0.1 -
8

ga !2 +

0.05 -

0 -.......... A.. * A p * 4 ..__

-0.05 / I I 1 I I
P=32 P=i6 P=8 P=32 P=16 P=8

TlOL16 TlOL16 T21L8 TZlL32 T21L16 T42L16

Disbibuted LT comparisons on odqin-250 usina MPI

1.2 -

l-

0.8 -

0.6 -

0.4 -

0.2 -

0 _

X

+

B
f,
X

fg. 8..

+

X

?I

I I
gemic 0

exchsum +
halkum 0

mpi-allreduce X
ringsum A

+

X

z

..(ij . @

-0.2 I I t I I I I
Pr.32 P=l6 P=6 P=32 P=16 P=8

T42Ll T21L2 T42L2 T85L2 T85Ll T85L4

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Distibuted LTComparkOnS on t3e-906 usina MPI

0 - D . 8 g 1;7 ..__..... @ . f?j ._.._.__.__

-0.1 1 I I I I I
P=32 P=l6 P=8 P=32 P=i6 P=8

T42Li T2112 T42L2 T85l.2 Taxi T85L4

Figure 3: Parallel Algorithm Comparisons.

validate these results, we also ran experiments with a two-dimensional decomposition, using a fixed par-
allel algorithm in the coordinate direction not being investigated. These experiments have their own, but
different, evaluation deficiencies, but agreement between the one and two-dimensional decomposition
experiments is a reasonable indicator that the evaluation results are a good basis for choosing parallel
algorithms to use with CCM/MP-2D. For the Origin and the T3E, both types of experiments had similar
results.

We can also use these experiments to compare performance between the different platforms, as shown
in Fig. 4. Here the best measured time for each platform (time) is normalized by the minimum time
over all platforms (min) for the given experiment. This comparison represents an evaluation of the in-
terprocessor communication performance that is more relevant to CCM/MP-2D than the COMMTEST
experiments, as it uses communication patterns more like those that occur in CCM/MP-2D. Note that
the timings are for the full PSTSWM code, so the results are also influenced by the computation per-
formance. However, the parallel algorithms compared in Fig. 3 differ only in the communication costs,
and the high variation in these results indicates that the performance of PSTSWM is strongly dependent
on the communication performance for these probtem sizes, numbers of processors, and platforms. The
lines connecting the data in Fig. 4 are used to make it easier to read and interpret the results. There is no
meaning associated with the values on the lines between data points. Note that we do not have SPP2000

.

results for the 32 processor experiments.

1.7
Best distributed FFT WJSUIIS using MPI

I I t I I I
ongin- +-

1.8 - sp3-200 +-. _
wg”9g g

1.5 -

1.4 -

.E
Q

;5 1.3 -
.s

/
,/’

1.2- +

1.1 -

l-

I.7

1.6

1.5

I.4

1.3

I.2

1.1

I

I I I I 1 I 1

P=32 P=I6 P=8 P=32 P=I8 P=8
T42Ll T21L2 T42L2 T85L2 T85Ll T85L4

Best lranspose FFT results “sl”g MPI
I I t I I I

origin-250 +-
sp3-200 +-- -
spp2000 0..

;?
13e900 -x-

;I
.::/

)(_._. -.)(,, 3

i
,.J

\, 4

+ ! 1. p

‘. !
* .I.

! ‘9’
.\ -. ! .:

~ _._.........“.’

“:$ +y
.+.

;; -+...
a/ ‘\\ ,’

: *...

* __._. +(“o/
>..- a,<’ ‘L-0 ‘.i’ IQ--- ‘+

1.7

1.8

1.5

I.4

I.3

I.2

1.1

Best distributed LT rSsullS using MPI
I I I I 1 I

origin-250 +-
xsp3-200 +-. _
i Sp1gEWG C$

i

I I I I I t t I
P=32 P=16 P=8 P=32 P=l6 PC8
T42Ll TZIL2 T42L2 T85L2 T85Ll T85L4

I I I t , t I

P=32 P=16 P=8 P=32 P=16 P=8
T10L16 TIOL16 TZlL8 TZIL32 TZILI6 T42L16

Figure 4: Best Relative PSTSWM performance for one-dimensional decomposition experiments.

The platform comparison data is somewhat difficult to interpret, however it is clear that the Origin
performs better than the T3E on all but the smallest granularity cases, when communication cost most
strongly dominates the execution time. However, a fast(er) processor is not everything, as the Origin
has similar or better performance than the SP3. The platform differences are strongly dependent on the
parallel algorithm used in the comparison, as they make different demands on the interconnect.

5.5 CCM/MP-2D algorithm tuning.

Using the PSTSWM experiments, we identified parallel algorithms to examine in CCM/MP-2D. This
included using communication protocol sensitivity data to choose communication protocols for updating
the halo regions in the parallel semi-Lagrangian algorithm and for swapping vertical columns in the
physics load-balancing algorithm.

Origin. Fourteen different algorithms were examined, seven distributed FFYdistributed LT algo-
rithms: do-d6, and seven transpose FFT/distributedLT algorithms: to-t6. d0 and t0 use MPISENDRECV-
based implementations of the “best” algorithms: swtrans for the transpose FFT and ha1 f sum for the
distributed Legendre transform. dl-d3 and tl-t3 use increasingly exotic implementations, attempting

11

to exploit communication/computation overlap or controlling the messaging more precisely with ready
send protocols. d4-d6 and t4-t6 are identical to do-d2 and to-t2 except that ringsum is used instead
of ha1 f sum for the distributed Legendre transform.

T3E. Five different algorithms were examined, two distributed FFT/distributed LT algorithms: do-
dl, and three transpose FFT/distributed LT algorithms: to-t2. t0 and t2 use MPIALLTOALLV to
implement the transpose FFI algorithm, while tl uses swtrans. do, to, and t2 use MPISENDRECV-
based implementations, while dl and tl use implementations that attempt to overlap communication
with computation.

Experiments. To choose the best parallel algorithm for CCMMP-2D for each processor count, we
examined each parallel algorithm for all aspect ratios and two different process mappings: row-major, as-
signing each logical processor row to consecutive processors, and column-major, assigning each logical
processor column to consecutive processors. Experiments were run using two different problem sizes:
T42L18 and T170L18. For T42L18, we measured the time to calculate 9 time steps, which includes 3
timesteps that calculate solar radiation (and use load balancing). For T170L18, we measured the time
to calculate 14 time steps, which includes 1 timestep that calculates solar radiation. A more expensive
column physics calculation, of absorption and emissivity, does not first occur until a later time step and
so is not included in the tests, but this should not effect the parallel algorithm comparisons.

Note that for the 128 processor experiments on the Origin, the application will share processors with
system processes. This does not cause significant performance degradation as long as process migration
is disabled. This was verified by also running 112 processor experiments, which exhibit scaling behavior
similar to that of the 128 processor experiments. However, if process migration is enabled (which is
typically the default) then when a system process requires a processor the application processes may
start migrating, which destroys data locality and degrades performance.

The results are presented in Tab. 1. The minimum 1D time refers to the minimum timing using a
latitude-only domain decomposition. Note that with T42L18, we can use a maximum of 32 processors
in the latitude direction with CCM/MP-2D. For T170L18, the maximum is 128 processors. Also note
that the choice of parallel FFT algorithm is not important in 1xP decompositions.

From these data we see that the optimal aspect ratio for CCM/MP-2D is of the form 1xP until the
number of latitude processors reaches a maximum number, 16 for the Origin and 32 for the T3E, after
which this stays fixed and further processor increments are applied to the longitude direction. This is
independent of whether the problem size is T42L18 or T170L18. Once this latitude processor maximum
is reached, the performance of the one-dimensional decomposition falls off rapidly, at least for T170L18.
For T42L 18, the algorithmic limit is reached soon after the “performance” limit.

On the Origin, the distributed FFT is optimal for most cases, while on the T3E the transpose FFT
(using MPIALLTOALLV) is optimal except for the 512 processor cases. In a rough sense, the T3E
performance is half that of the Origin, requiring twice as many processors to achieve similar timings.
However, the T3E performance scales reasonably well to higher numbers of processors, while initial
experiments indicate that running CCM/MP-2D across multiple 128-processor Origin 2000 machines
does not scale well currently.

5.6 CCM/MP-2D benchmarking measurements.

The final step in our evaluation is to benchmark the performance of CCM/MP-2D on the Origin and the
T3E using the parallel algorithms and aspect ratios identified previously. This represents our best efforts
in “fair benchmarking”, short of rewriting the code: which is not feasible. Large scientific simulation
codes like CCM3 outlive most computing platforms, and are also constantly being updated. A significant
rewrite in order to increase performance on any one given platform is rarely justified. Thus the tuning
options currently built into CCMMP-2D are extremely useful and important.

12

Minimum Optimal Optimal Minimum
Processors Time (sets.) Aspect Ratio Algorithm 1 D Time (l D-Min)/Min

16
32
64
128

T42LlS tuning results on the Origin u&g MPI
6.0 1x16 t2 6.0
3.3 2x16 d0 3.6
2.1 4x16 d2
1.4 8x16 d3

.oo

.09

64
128

T170L18 tuning results on the Origin using MPI
48.3 4x16 d6 65.5
31.5 8x1-6 t6 61.7

.36

.96

16
32
64
128
256
512

T42LlS tuning results on the T3E using MPI
13.8 1x16 t2 13.8
7.1 1x32 to 7.1
4.2 2x32 to
2.4 4x32 to
1.5 8x32 to
1.2 16x32 d0

.oo

.oo

T170L18 tuning results on the T3E using MPI
64 96.1 2x32 to 97.8 .02
128 48.5 4x32 to 60.4 .25
256 25.8 8x32 to
512 14.8 16x32 tl

Table 1: CCMIMP-2D parallel algorithm tuning results.

For T42L18, we measured the performance for a 10 day simulation, reporting the average time per
simulated day. For T170L18, we measured the performance for a 2 day simulation. These results are
graphed in Fig. 5. Note that these experiments do not include significant I/O. I/O is strongly dependent
on the type of experiment being run, and would have made it more difficult to compare the parallel
algorithms. Thus, these experiments represent the maximum performance that can be achieved, and a
production run may experience lower performance.

To measure scalability, Fig. 5 also shows the effective MFlops per second per processor for a given
total number of processors. For a perfectly scalable algorithm, the curve would be flat. Note that the
floating operation counts for T42L18 and T170L18 were determined on different machines and in differ-
ent ways, so are not directly comparable. However, they are internally consistent, allowing a convenient
way to compare both the raw performance and the difference in scalability between the Origin and the
T3E.

From these results it is clear that reasonable performance can be obtained for large processor con-
figurations if care is taken in tuning the parallel algorithms. While performance does drop off for large
numbers of processors for the T42L18 problem size, it is still useful to use these configurations for the
cases when runtime is more important than efficiency. As in the earlier comparisons, the T3E requires
approximately twice as many processors as the Origin to achieve the same performance.

13

.

CCMIMP-PD Execution Time per Simulation Day for T42L16
128

t3e900 a-
origin-250 +-

16

-16 32 64 126
Number of Processors

256 512

10 1 I I I 1 I
16 32 64 128 256 512

Number of Processors

CCM/MP-PD Execution Time per Simulation Day for T170L16
4096 I I

t3e900 4-
origin-250 +-

256 L
64

I I
128 256

Number of Processors

CCWMP-PD Execution Rate for T170L18

.----------------c--------------~---
25 - ---__ ---_

--._

20 I t

64 128 256 512
Number of Professors

Figure 5: CCMIMP-2D benchmarking experiments.

Table 2 describes the source of performance degradation for these runs. CCM/MP-2D was rerun with
performance instrumentation enabled. Timings were compared with the uninstrumented experiments to
verify that the instrumentation was not perturbing the performance significantly. The instrumentation
data was used to estimate the time spent in five different categories:

Serial Work: time spent in computation found in serial implementation;

Comm: time spent in interprocessor communication;

Imbal: time spent idle due to load imbalance;

Copy: time spent copying data in support of interprocessor communication:

Dupl: time spent in redundant spectral calculations.

where the time is summed over all processes. Serial Work should be constant as a function of the
number of processors. If it increases as the number of processors increases, then this indicates that the
computational rate is decreasing. If Serial Work decreases, then the rate is increasing. We used the Serial
Work estimate for the experiment using the smallest number of processors to define a baseline, and refer
to the relative change from this baseline as the Rate.

The interpretation of these results is aided by an understanding of the relationship between com-
munication overhead and the number of processors for CCM/MP-2D. A rough rule of thumb is that

14

Percentage Percentage
Processors Efficiency Comm Imbal Copy Dupl Rate

T42L18 performance analysis on the Origin using MPI
16 83.1 10.7 1.5 1.1 3.5 -
32 75.9 15.4 3.7 2.5 3.3 -0.7

P 65.6 22.1 5.0 3.5 2.9 0.9
128 50.9 32.5 6.3 2.3 2.2 5.9

T170LlS performance analysis on the Origin using MPI
64 70.4 16.7 6.2 3.3 3.4 -
128 63.0 23.2 7.2 4.2 3.0 -0.6

T42L18 performance analysis on the T3E using MPI
16 86.8 6.5 2.4 0.9 3.4 -
32 81.4 8.4 2.2 1.0 6.6 0.4
64 70.3 11.1 4.2 4.9 5.7 3.9
128 60.5 15.1 4.5 5.8 4.8 9.3
256 49.3 17.5 6,.1 7.1 4.1 15.9
512 34.3 23.5 6.1 7.2 2.9 26.0

T170LlS performance analysis on the T3E using MPI
64 72.1 6.8 11.0 3.2 6.9 -
128 72.1 7.7 11.3 3.5 7.2 -1.9
256 68.3 8.9 10.6 4.0 6.6 1.5
512 59.1 9.7 10.0 4.2 5.8 11.3

Table 2: CCMMP-2D performance degradation analysis.

communication costs increase or decrease slower than computation costs as the number of processors
increase. However, any increase in the communication overhead is moderate for the optimal algorithms,
and the communication cost functions are relatively well behaved. Thus, from the empirical results, it is
clear that the major cause of performance degradation for the T42L18 problem is the small problem size.
On the Origin, this is primarily reflected in the rapidly increasing percentage of time spent in interpro-
cessor communication and the associated data copying. On the T3E, communication costs also increase,
although not as quickly. However, the computational rate also degrades dramatically as the amount of
work per processor decreases. Most data are used a very small number of times before being flushed
from the cache.

For the larger T170Ll8 problem, communication costs are also the dominant cause of performance
degradation on the Origin. Here the cause is the high bandwidth requirements associated with the large
problem size (for all numbers of processors). On the T3E, communication costs are comparable to the
idle time caused by load imbalance between the equitorial and polar regions in the semi-Lagrangian
transport. The T3E also suffers from computation rate degradation for the largest number of processors.
However, this is not significant until then.

15

6 Conchsions

From the empirical experiments, it is clear that a one-dimensional domain decomposition as imple-
mented in CCM/MP-2D is the best choice when using a small number of processors. However, a two-
dimensional decomposition allows larger numbers of processors to be exploited efficiently, and is likely
to become a requirement for future versions of the CCM. Whether an explicit message-passing version
is required to exploit the additional parallelism is not clear as yet.

The empirical experiments also reinforce our opinion that it is important to tune the parallel algo-
rithms on each platform. For this to be feasible the tuning options must be built into the production code,
and parallel algorithm kernel codes must be available for tuning.

Finally, the empirical results indicate that a 128 processor Origin 2000 achieves performance similar
to that of a 256 processor T3E-900. However, larger numbers of processors can be used efficiently on
the T3E, e/specially for large problem sizes.

References
k

[l] A. ANDERSON, J. BROOKS, C. GRASSL, AND S. SCOTT, Pelformance offhe CRAY T3E Multi-
processor, in Proceedings of SC97, Los Alamitos, CA, 1997, IEEE Computer Society Press.

[2] L. J. BATH, J. ROSINSKI, AND J. OLSON, Users’ guide to NCAR CCM.2, NCAR Tech. Note
NCAR/TN-379+IA, National Center for Atmospheric Research, Boulder, Colo., 1992.

[3] DEPARTMENT OF ENERGY, Building an advanced climate model: Progressplanforthe CHAMMP
climate modelingprogram, DOE Tech. Report DOE/ER-0479T, U.S. Department of Energy, Wash-
ington, D.C., December 1990.

[4] J. B. DRAKE, I. T. FOSTER, J. G. MICHALAKES, B. TOONEN, AND P. H. WORLEY, Design
and pe$ormance of a scalable parallel community climate model, Parallel Computing, 21 (1995),
pp. 1571-1591.

[5] I. T. FOSTER, B . TOONEN, AND P. H. WORLEY, Pelformance of parallel computers for spectral
atmospheric models, J. Atm. Oceanic Tech, 13 (1996), pp. 1031-1045.

[6] I. T. FOSTER AND P. H. WORLEY, Parallel algorithms for the spectral transform method, SIAM
J. Sci. Comput., 18 (1997), pp. 806-837.

[7] G. A. GEIST, A. L. BEGUELIN, J. J. DONGARRA, W. JIANG, R. J. MANCHEK, AND V. S.
SUNDERAM, PVM: Parallel Virtual Machine - A Users Guide and Tutorial for Network Parallel
Computing, MIT Press, Boston, 1994.

[8] J. J. HACK, B. A. BOVILLE, B. P. BRIEGLEB, J. T. KIEHL, P. J. RASCH, AND D. L.
WILLIAMSON, Description of the NCAR Community Climate Model (CCM2), NCAR Tech. Note
NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, Colo., 1992.

[9] J. T. KIEHL, J. J. HACK, G. BONAN, B. A. BOVILLE, D. L. WILLIAMSON, AND P. J. RASCH,
The National Centerfor Atmospheric Research Community Climate Model: CCM3, J. Climate, 11
(1998), pp. 1131-l 149.

. [lo] NATIONAL RESEARCH COUNCIL, Capacity of U.S. Climate Modeling to Support Climate Change
Assessment Activities, National Academy Press, Washington, D.C., 1998.

[1 l] W. WASHINGTON AND C. PARKINSON, An Introduction to Three-Dimensional Climate Modeling,
University Science Books, Mill Valley, CA, 1986.

[121 D. L. WILLIAMSON AND P. J. RASCH, Two-dimensional semi-Lagrangian transport with shape-
preserving interpolation, Mon. Wea. Rev., 117 (1989), pp. 102-I 29.

16

.

1131

[I41

P. H. WORLEY, impact of Communication Protocol on ker$ormance, in Proceedings of the Second
International Workshop on Software Engineering and Code Design in Parallel Meteorological and
Oceanographic Applications, June 1998, pp. 277-288.

P. H. WORLEY AND B. TOONEN, A users’ guide to PSTSWM, Tech. Report ORNLiTM-12779,
Oak Ridge National Laboratory, Oak Ridge, TN, July 1995.

