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ABSTRACT

The objective of this research is to develop a system capable of identifying
speakers on wiretaps from a large database (>500 speakers) with a short search time
duration (<30 seconds), and with better than 90% accuracy.  Much previous research in
speaker recognition has led to algorithms that produced encouraging preliminary results,
but were overwhelmed when applied to populations of more than a dozen or so different
speakers.  The authors are investigating a solution to the "large population" problem by
seeking two completely different kinds of characterizing features.  These features are
extracted using the techniques of Neuro-Linguistic Programming (NLP) and the
continuous wavelet transform (CWT).

NLP extracts precise neurological, verbal and non-verbal information, and
assimilates the information into useful patterns.  These patterns are based on specific cues
demonstrated by each individual, and provide ways of determining congruency between
verbal and non-verbal cues.  The primary NLP modalities are characterized through word
spotting (or verbal predicates cues, e.g., see, sound, feel, etc.) while the secondary
modalities would be characterized through the speech transcription used by the individual.
This has the practical effect of reducing the size of the search space, and greatly speeding
up the process of identifying an unknown speaker.

The wavelet-based line of investigation concentrates on using vowel phonemes
and non-verbal cues, such as tempo.  The rationale for concentrating on vowels is there are
a limited number of vowels phonemes, and at least one of them usually appears in even
the shortest of speech segments.  Using the fast, CWT algorithm, the details of both the
formant frequency and the glottal excitation characteristics can be easily extracted from
voice waveforms.  The differences in the glottal excitation waveforms as well as the
formant frequency are evident in the CWT output.  More significantly, the CWT reveals
significant detail of the glottal excitation waveform.

1. INTRODUCTION

The objective of this research is to develop a system capable of identifying
speakers on wiretaps from a large database.  This is a problem that has been declared
ÒsolvedÓ many times in the past, but only for distinguishing a few voices in a database of a



few dozen.  However, the real problem is to devise a method that reliably recognizes a
speaker in a database of 500 and more.

Fourier-based speaker-recognition systems typically encounter two difficulties.
First, they wrongly assume that the signal is mathematically stationary.1 Using a model
whose behavior is fundamentally different from that of the underlying physical process,
guarantees the introduction of predictive error.  Second, they ignore many identifying cues
present in the signal.  

Other strategies that have met with varying degrees of success include cepstral
methods, autocorrelation methods, Gaussian mixture, and wavelet-based methods.
Gaussian mixture lacks the flexibility to be consistently reliable over a wide range of
environments and speakers.2 Cepstral methods are based on the proposition that  in the
cepstrum of a channel-distorted signal, the channel distortion is an additive constant.2

Autocorrelation methods attempt to look directly for self-similarities in the signal.
Autocorrelation works reasonably well for high-pitched speakers, and cepstral analysis
works reasonably well for low-pitched speakers, but neither method is suitable for a wide
range of pitches.

Wavelet methods are usable over a wide range of pitch.  They are robust to noise,
and are not critically dependent on segment length.  Early attempts with wavelet methods
used feature selection criteria that were somewhat arbitrary. Subsequent work has sought
to use adaptive wavelets to make this process more objective and automatic.1,3

Our research seeks to solve the problem of dealing with a large speaker population
by combining two strategies.  One is to use the fast continuous wavelet transform (CWT),4

a more flexible wavelet technique than those attempted previously. CWT overcomes the
octave-resolution limitation of the dyadic wavelet. The second strategy is to explore
previously ignored features in speech data, the cues to the primary representational system
(PRS) operating in the brain of the speaker.

This investigation is being performed on the TIMIT and NTIMIT databases.
These consist of 630 speakers uttering 10 phrases each.5,6,7  The NTIMIT database was
formed by transmitting and recording the TIMIT database over commercial telephone
lines to introduce the effects of a typical  communication channel to the voice signals.

2. FEATURES IN CWT SPACE

In contrast to discrete and dyadic wavelet transforms, whose scaling properties are
less flexible, the CWT offers the advantage of much higher resolution, where needed, in
both time and scale.  The CWT algorithm also offers the opportunity to tailor the choice of
the wavelet function used to match those characteristics that distinguish individual
speakers.  Figure 1 shows a comparison of the CWT and the discrete wavelet-transform
representation of the same voice segment.  As is evident in Figure 1, the CWT
representation (top) reveals significantly more detail than the dyadic wavelet
representation (bottom.)



The rationale for concentrating on vowels is that they are formed with the entire
vocal tract, and thus should maximize the speaker-dependent features of the voice. The
details of both the formant frequency and the glottal excitation characteristics can be
easily extracted from voice waveforms with the CWT. More importantly, the CWT
reveals significant detail of the glottal excitation waveform.

3. FEATURES IN NLP SPACE

ÒEvery individual channels information differently based on our preference to the
sensory modality of representational system (visual auditory or kinesthetic) we tend to
favor. Therefore some of us access and store our information primarily visually first, some
auditorily and others kinesthetically (through feel and touch), which in turn establishes our
information processing patterns and strategies and external to internal ( and subsequently
vice versa) experiential language representation.Ó8 Identifying the PRS is the basis for
using neuro-linguistic programming (NLP) techniques.

It is possible for NLP to extract specific patterns based on integral cues
demonstrated by each individual. NLP can extract neurological, verbal and non-verbal
information from an individual forming the basis for identifying the PRS (and ancillary
representation systems) of the individual speaker.  The collected information can then be
assimilated into useful patterns; thus, allowing further categorization of the primary
modalities into visual detail, visual-general, auditory-tonal, auditory-digital, kinesthetic-
tactile and kinesthetic-emotive.  For example, kinesthetically oriented individuals respond
with a much slower voice tempo that may contain long pauses between words or sentences
and often have a low, deep, and breathy tonality to their voice.9

NLP allows the investigators to first categorize individuals into three primary
modalities or systems, visual, auditory and kinesthetic; then further categorize the primary
modalities to visual-detail, visual-general, auditory-tonal, auditory-digital, feel and touch,
olfactory and gustatory. The primary modalities would be accomplished through word
spotting (or verbal predicates cues, e.g., see, sound, feel, etc.) while the latter would be
characterized through the speech transcription used by the individual.

Figure 1. Continuous vs. discrete wavelet
representation of a voice segment



The secondary NLP modalities can then be used to correlate the individual's non-
verbal cues, e.g., breathing, tempo and tonality with that of the verbal cues extracted by
the wavelet analysis to generate the feature vector.  For example, breathing changes are
different for each of the primary systems.  Individuals that are auditory, would have an
even breathing with a somewhat prolonged exhale in their responses, whereas, the
kinesthetics would have deep, full breaths, and visual would breathe more quickly and
shallow.

3.1 Verbal Cues

When communicating with others, people use specific words known as predicates
to organize and make sense of their experience. These predicates can define a
representation system by the words or phrases used by an individual. Therefore, predicates
paired with either of the other two modalities, (neurological or physiological cues) provide
a means by which to identify the PRS of an individual.

a)  Look how high, see, observe, point of view, size, shapes, colors, distance, etc.,
are characteristic of the words or predicates used for visual processing.

b) Sounds rather loud, tone, click, hum-m-m, bang, tap of a pencil, etc. are
characteristic of the predicates used for auditory processing.

c)  Feels soft to the touch, laugh, grasp, handle, smooth, sour, smelly, etc. are
characteristic of the predicates used for kinesthetic processing.

3.2 Physiological (Non-Verbal) Cues

ÒBreathing is one of the most profound and direct ways we have of changing or tuning our
chemical and biological state to affect our neurology.Ó9 Associated with each of the
modalities are the following breathing characteristics.9,10

a)  Shallow, quick breathing indicates visual processing.
b)  Even or level breathing,  including a sustained exhale indicates auditory

processing.
c)  Deep, full breathing indicates kinesthetic processing.

ÒChanges in voice tempo and tonality follow changes in breathing patterns.    The amount
of air, and the rapidity with which it pushed over oneÕs vocal chords, will cause noticeable
changes in voice quality.Ó9 Associated with each of the modalities are the following tempo
characteristics.9,10

a)   Quick and choppy bursts of words in a high pitched, nasal and/or strained
tonality with a typically fast tempo of speech indicates visual processing.

b)  A clear, midrange tonality of words in an even, rhythmic tempo indicates
auditory processing.   Typically well-enunciated words will accompany the activity.

c)  A slow voice tempo with long pauses and low, deep and often breathy tonality
indicates kinesthetic processing.



Associated with each of the modalities are the following spacing characteristics.

a)  Short spacing between words indicates visual processing.
b)  More even spacing between words indicates auditory processing.
c)  Large spacing between words (versus visuals and kinesthetics) indicates

kinesthetic processing.

These physiological non-verbal cues had been determined qualitatively by Bandler
et al, over a course of approximately six years (1974-1982), and have been applied over
the past 26 years with consistency and accuracy. The cues provide the means to determine
the PRS from a core sample set from the TIMIT database.

4. WORK IN PROGRESS

A key speaker-dependent feature of interest is the fundamental formant frequency,
or Òpitch,Ó of the speakerÕs voice.  The pitch of the speakerÕs voice corresponds to the rate
at which the glottis opens and closes as air is forced through the larynx during voiced
speech.  Previous work has shown that the pitch can be reliably estimated using the
discrete wavelet transform with dyadic scale changes (DyWT).3  The pitch period is
estimated by locating periodic peaks that appear across three (DyWT) scales.

The CWT algorithm produces an approximation to a continuous change in wavelet
scale as opposed to the power of two changes usually employed in the DyWT. The pitch
period can be directly observed and thus extracted from the resulting CWT representation.
Figure 2 shows the amplitude of the time-frequency representation of a male and female
speaker uttering the vowel sound /aa/. The pitch period is readily evident as the distinct
ÒblobsÓ that represent the release of acoustic energy as the glottis is forced open and then
shuts.  To extract the pitch period from the CWT representation, it is only necessary to
locate the centroid of each blob and then determine the corresponding frequency.

Figure 2. CWT of Female (Left) and Male (Right) Voices Uttering /aa/ (TIMIT Database)

An important question for this research is whether speaker-dependent features can
be reliably extracted from voice signals obtained via wiretaps.  In particular, the pitch of a
speakerÕs voice typically lies in the range of frequencies that are distorted by the channel.
To answer this question, the analysis described above has been repeated with the



corresponding signals from the NTIMIT database.7 Figure 3 shows the time-frequency
representation of the voice segments from the NTIMIT database that approximately
correspond to the segments shown in Figure 2. The pitch period can still be observed in
the spacing of the distinct ÒblobsÓ despite the slight deformation of the blobs due to
channel distortion.

Figure 3. CWT of Female (Left) and Male (Right) Voices Uttering /aa/ (NTIMIT Database)

For NLP analysis, a control data set consisting of a small sample size of 18 speech
patterns (males and females) - seven visuals, five auditories, and six kinesthetics was used
to establish qualitative parameters associated with each modality. The individuals read the
sentence, ÒShe had your dark suit in greasy wash water all year;Ó while their speech
pattern was recorded and analyzed.

Examples of the control data set are shown in Figures 4-6.  A typical voice pattern
of a visual individual is shown in Figure 4. A typical voice pattern of an auditory
individual is shown in Figure 5. A typical voice pattern of a kinesthetic individual is
shown in Figure 6.

     
Figure 4. Typical voice pattern of an individual whose PRS is visual

                                          = word or phrase, quick, choppy bursts of words, etc.

     she     had    your dark       suit       in        greasy      wash         water      all        year

       spacing



Figure 5: Typical voice pattern of an individual whose PRS is auditory

          Figure 6:   Typical voice pattern of an individual whose PRS is kinesthetic

The control data sample is currently being analyzed using a classification
algorithm. The program is comparing the characteristics of each speech pattern associated
with a specific PRS.  The intent is to establish quantitative measurements (or parameters)
for each PRS.

5. CONCLUSIONS

There are two potential strategies for combining NLP and CWT techniques.  One
is to have NLP modality as the high level in a hierarchical database of the samples, with
the CWT-derived features being a lower level descriptor of the sample. (i.e. We use NLP
to provide a means to limit the search space.)  The other strategy for using NLP is to add
features (extra dimensions) directly to the CWT-derived feature vector.

    she      had  your     dark       suit                  in     greasy     wash            water              all          year

       spacing

      she        had      your     dark          suit        in               greasy          wash          water           all        year

       spacing



For the second strategy to add any value, it would be necessary that the NLP
features and CWT features be orthogonal (or nearly so).  Only if the added features are
relatively independent, including the NLP features and CWT features in a single high-
dimensional feature vector produce a classifier superior to either feature set alone.
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