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ABSTRACT

‘We present scaling laws for the behavior of hohlraums that are somewhat more
complex than a simple sphere or cylinder. In particular we consider hohlraums that are in
what has become known as a "primary” "secondary” configuration, namely geometries in
which the laser is absorbed in a primary region of a hohiraum, and only radiation energy
is transported to a secondary part of the hohlraum that is shielded from seeing the laser
light directly. Such hohlraums have been in use of late for doing LTE opacity
experiments on a sample in the secondary and in recently proposed "shimmed" hohlraums
that use gold disks on axis to block a capsule's view of the cold laser entrance hole. The
temperature/drive of the secondary, derived herein, scales somewhat differently than the
drive in simple hohlraums.

1. Imtroduction

In a companion paper! in these proceedings we have rederived the basic scaling laws for radiation
drive in simple laser driven hohlraums. It is our purpose in this paper to extend those results and
methodologies to more complicated hohlraum geometries. In particular we consider hohlraums that are in
what has become known as a "primary"/"secondary" configuration, namely >geometries in which the laser is
absorbed in a prim;ary region of a hohlraum, and only radiation energy is transported to a secondary part of
the hohiraum that is shielded from seeiﬁg the laser light directly. Such hohiraums have been in use of late
for doing LTE opacity experiments on a sample in the secondary. Such hohlraums have come under the
jargon titles of "hohlraums with lips™ and "McFee hohlraums”". The laser beams enter through holes in the
end caps of a cylinder, are absorbed along the walls, and along "lips" that protrude perpendicularly from the
cylinder walls, in regions near the end caps. Radiation flows from this primary region through the circular
aperture defined by the lips, into the secondary region, namely the central region of the cylinder which holds
a capsule or Sample. These geometries have been in use for a long time. A decade or two ago they were used

on two beam facilities such as Argus and Novette, wherein the incident laser struck a scattering cone in the




primary of a cylindrical hohlraum, the capsule sat in the center of the secondary, and radiation flowed to it

by passing through the annular region between the on axis scattering cone and the cylinder walls.

History aside, the temperature/drive of the secondary, derived herein, scales somewhat differently
than the drive in simple hohlraums. McFee and Wilde? have presented scaling laws for the secondary drive
temperature derived empirically from LASNEX simulations. They find that at constant input laser energy
EL, the drive T scales as s -3/4 where s is a scale size. At constant s they find T scales as EV2.T (Note to
the reader: in this paper we will be using the symbols E and E[, fairly interchangeably ). Their paper (or at
least early'to recent versions of it) try to motivate the s -3/4 scaling in terms of radiatibn energy scaling as
volume times T4, or s3T4. Therefore, at constant E, T scaling as s -3/4 would cleaﬂy ensue. We find two
difficuities with this explanation. First, while it is true that the energy in a radiation field does scale that
way, in these systems of interest, the amount of energy in the radiation field is small, only a percent or two
of the total available enrgy - the bulk of the energy resides in the Au walls of the hohlraums. Thus holding
laser energy ﬁxéd should not be equated with holding the energy in the radiation field fixed. Secondly the
scaling of E as $3T4 would imply that at constant s, T should scale as EY4 in contradiction to the E1/2.7

that is observed in their simulations.

In part II of this paper we will derive their observed scaling. While a very quick derivation can be
given in one line, we find that it too is over simplified. The quick derivation is simply to say that E scales
as s2T2-7 . This already has many virtues. Namely it scales as wall area, 32, not hohlraum volume, s3, as
is appropriate for our situation in which almost all the energy resides in the wall. The wall loss scaling of
T2.7 is not that dissimilar to the T3-2 derived in our companion paper! for simple hohiraums. In one fell
swoop this scaling reproduces the simulation results. At constant E, T should scale as | §2/2.7 op 5-0.74
At constant s, T should scale as E1/2.7. Thus both observations are derived by this simple formula. There
are, however, two flaws in this argument. First, it is an oversimplification to use results for simple

hohlraums and apply them to these primary/secondary geometries. Secondly, the 727 vs. T 3-2 makes one

wary as well. In the ensuing section we will solve the scaling problem more properly, accounting for the




geometry, and find full consistency with our previous results, and with the simulation results of McFee and

Wilde as well.

In part III of this paper we will apply our methodology to yet another primary secondary
configuration, namely "shimmed hohiraums” presented by Amendt and Murphy in these procedings3. Here
a shim disk on axis shields the ca}mule from seeing the cold laser entrance hole. In this case, we are
presented with the curious configuration of an inside out McFee hohlraum, in which the primary is
essentially the central section of the cylinder which holds the capsule.The laser beams enter the cylinder
through entrance holes in the end cap as usual, but propagate through the outer "secondary” section, pass
between the shim disk on axis and the wall, and impinge on the walls in the central section of the
hohlraum. Thus the end sections of the cylinder are the cooler secondary, and the aperture through which
the radiation flows from the middle (primary) to the ends (secondaries) is the annuius between the on axis

shim disk and the cylinder wall.




II. Primary / Secondary Scaling

In primary/secondary hohiraums, laser light enters the l_lohlraum interior through laser entrance
holes located in either end cap of the cylinder. The light is absorbed at the cylinder walls in the primary
region of the cylinder, converting laser light into soft x-rays. These x-rays are rapidly absorbed and
reemitted by the walls setting up a radiation driven thermal wave diffusing into the walls (a so called
"Marshak Wave"). Some of the x-rays escape out the laser entrance holes (LEH) while others flow through
the primary secondary gap into the secondary region of the hohlraum. There they are absorbed by the walls
in the secondary section of the cylinder and by whatever sample there may be there. We will ignore the

sample here, as it is typically a small energy sink.

In our companion paper! , the basic scaling of hohiraum wall loss due to the Marshak Wave was
derived. We found the wall loss to scale as T3-2 for XSN opacity and as T34 for STA opacity. As we are
uncertain of exactly what opacity was used by McFee and Wilde, with the presumption that it was quite
close to ours, for arbitrariness sake we will split the difference here and postulate E scaling as T3.3,

Clearly, the small differences here are not crucial for the derivation that will follow.
The energy balance in the primary can be written as:
NEL=Ewp +ELEH + EpS $))

where the lhs of the equation represents the source of x-rays coming from the conversion of laser energy
Ep, into x-rays with an efficiency 7. The right hand side represents the three sinks of energy in the primary;
Ewp is the wall loss in the primary, E] gEH is the laser entry hole loss, and Epg is the net loss of of
radiant energy flowing from the primary to the secondary. We will consider only 1 nsec flat top laser drive
pulses here for simplicity, and thus ignore time dependence completely in the scaling arguments presented
below, for ease of presentation. Clearly the time dependence, which was the major focus of our companion

paper! could be put in for more generality. As discussed above, we take Ewp to scale as Tp3-3Ap. where




Ap is the primary wall area and Tp is the primary radiation temperature. E[ EH clearly scales as Tp4AH
where AY is the LEH area. Epg scales as Aps(Tp4-Ts4) where Aps is the area of the gap between the

primary and the secondary through which the radiation flows, and T§ is the secondary temperature.
The energy balance in the secondary can be written as:
Eps =Ews @

where Epg has already been defined, and in the secondary serves as the source of radiation. The sink is Ewyg
the wall loss in the secondary, which scales as Ts3-3As, in which Ag is the secondary wall area. Let us

define y as TS/Tp, combine Eq. (1) and (2) to obtain Eq. (3), and rewrite Eq.(2) as Eq (4):
NEL =c Ap Tp33 (1+eTp0-7 + 5 y3-3) €))
Aps Tp* (1-y%) =c 5 Ap Tp33 y3.3 @)

where the constant c represents the wall loss coefficient, and € and & represent ratios of the areas Af/Ap
and AS/Ap respectively. We anticipate that y will be less than one and thus will ignore y4 compared to 1
and 8y3-3 compared to 1. Assuming € is small (it usually is), and for the purposes of simplifying even

further, we drop that term as well, leading Eq (3) to reduce to:
E=s2 Tp33 - ®

where we have ignored consants for nbw and note that the area Ap scales as scale size s, squared. In Eq. (4)

the areas that appear on both sides of the equation cancel the s scaling, and we have the simple equation:

TP0'7=Y3'3 ©6)

again ignoring constants for now. Thus Eq. (6) implies that

which means that




Ts=y TP=TP1'21 8)
Using Eq. (5) we obtain
Tg= (E/S2)1'21/3'3 = (E/82)1/2.7 9)

This is the central result of this analysis, and is precisely the form required to fit the two observations based
on the LASNEX simulations of McFee and Wilde, namely that at fixed E, T scales as 574, and that at
fixed s, T scales as EV2.7  Moreover, it is completely consistent (indeeed, derived on thé basis of) the

scaling laws for wall loss derived in our previous paper , which dealt with simple geometry hohlraums.

Had we kept track of constants, coefficients etc. we couid have quantitatively shown that these sets
of equations lead to the simulation results. For example a scale 2 McFee hohlraum on Nova would, on the
basis of these equations, get a primary temperature of about 195 eV and a secondary temperature of about
115 eV, in reasonable agreement with the LASNEX simulations. For brevity sake we omit those details

here, but in the next section will give a detailed numerical example of these equations in action.




II. Shimmed Hohiraums

‘We now apply our methodology to yet another primary secondary configuration, namely "shimmed
hohlraums” presented by Amendt and Murphy in these procedings3 . The laser beams enter the cylinder
through entrance holes in the end cap as usual, but propagate through the outer "secondary” section, into the
central section of the hohlraum, and impinge on the walls there. The outer parts are the cooler secondary,
and the aperture through which the radiation flows from the middle (primary) to the ends (secondaries) is the

annulus between the on axis shim disk and the cylinder wall.

The LASNEX "observables” to be explained here are the 230 eV for a hohlraum with no shims vs.
a 240 eV drive on capsule for one with shims. Why would a hohlraum that introduces about 500J of more
wall loss via the shim disks, actually produce a hotter hohlraum rather than a cooler one? The answer to the
paradox is essentially that we have created an inside out McFee hohlraum, in which the central section is
the hotter primary, and drives the capsule. Indeed, the outer sections of these hohlraums are the cooler
secondaries, and are predicted by LASNEX to be only about 215 eV. We will derive all of these numbers

presently.

The cylinder is 0.8 mm in radius with a laser entrance hole (LEH) of 0.6 mm radius. The half
length (from mid plane to end cap) of the can is 1.15 mm. The shim is 0.325 mm in radius and placed on
axis 0.65 mm from the midplane, (thus, 0.5 mm from the LEH). The capsule has a radius of 0.275 mm.
Thus the half-area of the primary walls (from midplane to shim and including the shim disk area) Ap is 3.6
mm2, of the secondary Ag 3.7 mm?2 and of the half-éapsule Ac 047 mm2. The LEH area Ar is 09 mm2,
and the annular area between shim and wall, Apg, through which the radiation flows from primary to
secondary isA1.7 mm2. A slight complication here is that some (about 20%) of the laser energy is deposited
along the cylinder wall between the axial position of the shim and the end of the can; namely there is some

of the laser source in the secondary region. Nonetheless we can generalize our treatment in Sec. II to

account for this situation, and we will define Ef to be made up of two parts Ef p and Ej g for those




amoumsabsorbedintheprimrya/ndseoondarymgionsmspectively.Inomtase,forhalfoftheincidem .
20KJ (= 200 hJ) going into the half of the hohlraum being calculated, and at a conversiion efficiency of
70%, there is 1/2 of 140 hJ of xray energy available. If 20% is created in the secondary, then 56 hJ is
available in the primary and 14 hJ in the secondary. Using the same notations of section II (in particular, y=

Ts/Tp) and appealing as we did there to energy balance, and using the XSN scaling laws for wail loss, hole

loss, capsule loss("EC") etc. as presented in Ref 1, (for a 1 nsec flat top pulse) we find the following:

The primary equation reads:
NELp = Ewp + Epg + Ec or
nELp = 44Tp3-2Ap + .7 ApsTp*(1-y4) + 7ACTp4 (10)
while the secondary equation reads:
nELS +. Eps = Ews + ELEH or

nELs +.7 ApsTpH(1-y%) = 44Tp3-2y3.2a5 + .7 ALTPH* (11)
Using Eq. (11) in Eq. (10) we rewrite Eq. (10) as:
NEL = NELP+ELS) =44Tp3 2Ap(1+(Ag/AP)y3 2+ TACTRA(I+AL/AC)YY) (1)
Inserting the values for the areas (discussed above) Eq. (12) reduws 10
70 = 1.6 'rp3-2 (1+y32) +33Tpt (1 +19 v (13)
while Eq. (14) reduces to:
4+ 12 T4 (A-y4)=16Tp32y32 + 64 Tpty* (14)

Equations (13) and (14) can be solved iteratively with a solution quickly converging to Tp=245and y =

0.88, namely Ts = y Tp = 2.16. As quoted above from Amendt’s simulations, these values for the primary




and secondary temperatures are in excellent agreement with LASNEX. Moreover, had we considered a

simple geometry (no shims) we would be solving:
nEL = Ew + ELEH = + EcC or
nEL = 4T32Aw + 7TTAL +.7ACT4 (15)

For the simple, no shim, geometry we find Aw = 6.7 mm?2 and Ay, and Ac are as above. Thus Eq. (15)

reduces to:

70 = ‘2.95 T32 +96T4 (16)
whose solution is T = 2.3, vagain in excellent agreement with the LASNEX result for no shim of 228 eV.
IV, Summary

We have seen that extending our hohlraum scaling laws from simple geometries to primary /

secondary ones serves as a unifying treatment that can account for all of the results quoted thus far.

We gratefully acknowledge useful conversations with R. McFee, B. Wilde, and P. Amendt.
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