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A B S T R A C T

We discuss calculations of the coherent electromagnetic pair production in ultra-

relativistic hadron collisions. This type of production, in lowest order, is obtained

from tree diagrams which contain two virtual photons. We discuss simple Monte

Carlo methods for evaluating these classes of diagrams without recourse to in-

volved algebraic reduction schemes.

1. INTRODUCTION

In this lecture we shall address the question of pair production from classical

time-dependent electromagnetic fields. These types of fields are present in the

peripheral ultrarelativistic collisions of heavy nuclei *• K Because of the possible

coherence in the field, it is speculated that relatively large fluxes of exotic particles

may be produced. Such particles include fi and r pairs, • • ^ , magnetic monopoles



6>, W-pairs, b-quark pairs, and possibly the Higgs '^K Most of these studies

address colliding beams of heavy nuclei at energies per nucleon in the range 3 —103

GeV, corresponding to suggested experiments at the AGS, CERN, the proposed

RHIC facility at Brookhaven, and possibly the SSC.

Out of these speculations arise a series of questions:

• In view of the interest in dilepton production and J/%1> suppression as a di-

agnostic of the formation of the quark-gluon plasma, it is important to know

whether electromagnetic pair production exhibits features which clearly dis-

tinguish it from hard hadronic processes.

• Pairs of W bosons have not yet been produced in laboratory collisions. The

Z4 scaling implicit in the coherent production of these particles may amplify

cross section yields sufficiently to be of interest experimentally. Simple calcu-

lations suggest that the processes for producing W-pairs are also candidates

for producing the Higgs. Thus it may be possible to use heavy-ion machines

to search for the Higgs.

• Many of the prop"rties of vector mesons have emerged from the Drell-Yan

measurements of electron pair production ^-iU). However, there are anoma-

lies in this analysis which have recently been resolved with a more careful

consideration of the hadronic current matrix elements '•'••'•*).

Concerning the coherent production of fi and r pairs perturbatively, other cal-

culations of cross sections have been performed using the Weizsacker-Williams



approximation ^k). However, this approximation may not always work, since the

constraint that the photons must be on-shell is not always realizable; an example

is the case where the virtual photons carry an explicit transverse momentum 1~).

Furthermore, the coherent production of pairs from nuclei is a collective process

which is very different than that arising from the collision of point charges. Nucle-

ons in nuclei move at high velocities and carry a large momentum. Form factors

control the coupling of these nucleons to photons, and the strength of this cou-

pling regulates the magnitude of the pair cross section. Thus, nuclear and nucleon

electromagnetic form factors must be included in these calculations.

Pair production in heavy-ion collisions is nonperturbative at high energies. It

is plausible that the introduction of nucleon form factors may regularize the per-

turbation theory order by order. Thus as noted in Ref. l-1.-1-)^ Feynman pertur-

bation theory becomes an efficient tool to address details of the hadron-photon

couplings and their effect on the lepton cross sections. Calculations in this frame-

work for electron-positron pairs demonstrate a substantial yield at large pair in-

variant masses and transverse momenta, where equivalent photon approximations

are invalid.

In comparing computation to experiment, it is important to understand the ex-

perimental constraints placed on the data. The Monte Carlo algorithms discussed

in this talk have the advantage that complicated constraints on the reaction phase

space can be dealt with in a straightforward manner. We shall apply these methods

to calculate cross sections for a variety of complex experiments as follows: anoma-



lous e* production in 17 GeV n p collisions, and /i and r lepton production in

ultrarelativistic collisions of heavy nuclei.

2. SEMICLASSICAL THEORY

Formally, we employ a semiclassical treatment of pair production wherein the

leptons are coupled to the classical electromagnetic four-potentials of the colliding

nuclei. The source currents are the Lorentz-boosted charge distributions of the

colliding ions. In the limit of structureless point charge nuclei, these potentials

are the retarded Lienard-Wiechert interactions. However, it is clear from general

arguments that the electromagnetic coupling of (i and r pairs to protons in nuclei

depends on the nucleon currents and form factors in each ion. In our present

calculations, we are primarily concerned with peripheral heavy-ion collisions, and

we construct classical four-vector potentials employing phenomenological nuclear

currents and form factors which fit elastic electron scattering data from nuclei.

The formulation of electromagnetic pair production used here is based on the

Lagrangian density for the coupling of the classical electromagnetic four-vector

potential to the lepton fields given by

£•„«(*) = -*(z)7^(z)A"(z) . (1)

This Lagrangian conserves lepton number ', and we treat the production of elec-

trons, muons, and tauoni as occurring independently. The equations of motion

for lepton state vectors is obtained from (1) using variational methods. We use a

semiclassical action corresponding to a time-dependent many-lepton state $(t),



S = Jd*x< *(«) |: Co(x) + Cint(x) :| *(f) > , (2)

where the normal ordering is with respect to a reference state, and where £0 is the

usual noninteracting fermion Lagrangian,

£0(x) = *(x)[7^"^ - m]*(x) . (3)

In (2), the dynamical coordinates which are varied to make the action stationary

are the parameters labeling the state vector $(<)• We additionally assume that

the initial state vector corresponds to a single Slater determinant, | 0 >,

limj $(*) >-»| 0 > . (4)

Since we shall only consider pair production out of the vacuum, we choose | O >

as the vacuum state, which we also identify as the reference state for the ordering

in (2). By construction, we have a well-defined initial Hamiltonian with a cor-

responding complete and orthonormal set of single-particle states, x ^ a n d x[~\

satisfying

Ho | X™ >= El* | xS±} > (5)

where

£f> = ±(m + n i / 2 (6)

and

Ho = a-p + ma0. (7)



Since the above model result" \-: 'jles that are different than the usual Feynman

diagrams for two-photon processes, we find it expedient to norm our states as

follows,

L I v(+) >< v (+ ) I 4- I v'") >< Y ( - ) I - 1I Xq -^^- Xq I I I AIJ * ' s - Xq I — -1 l
1

(8)

X? > =

With this choice of reference state, the states | x^ > a n d | X̂ ~̂  > a r e single-

particle and single- antiparticle states, respectively. The dynamics governing the

time evolution of the states in (2) is unitary, and given by

\$(t)>=K(t,-oo)\O>, (9)

where KK^ = K^K = 1. There are several important consequences of these

assumptions. Equations (4) and (9) guarantee that the state $ is at all times a

representation of a single Slater determinant, and equations of motion can be cast

into the form

H(x)K(t,t') = idtK(t,t'), (10)

where

= f04(x) (11)

= -a • A(x) + A0(x) .



With the above-noted assumptions, all orders of processes can be obtained from

the solutions to (10). In particular, those solutions which are perturbative in H{ni

can be expressed as the series

K{t,<X>)= K0{t,-Oo) + (- i ) / dTKo(t,T)Hint(T)KO{T, -OO) +

(-i)2 f dr f dT'Ko(t,T)Hint(r)Ko(T,T')Hint(r')Ko(r',-oo)
J—oo J—oo

+ •••, (12)

where in (12), the lowest order term is simply

iH0(t-t')}. (13)

In our model tLc electromagnetic coupling to the nuclear currents is mediated by

the classical four-vector potentials A^. The source currents for these fields come

from the motion of the nucleons, both collectively, and as motion within each nu-

cleus. For definiteness, we consider a collision between two nuclei a and 6, viewed

in the equal velocity frame. The nucleus a moves with a velocity +/? parallel to

the z-axis. The nuclei have charges Za and Z&, respectively, and their trajectories

are separated by an impact parameter, b. Hereafter, in all equations, we employ

natural units with h = c = m — e = l,m being the lepton mass. In presenting

calculational results for physical observables, we restore the appropriate dimen-

sional scaling. This is consistent with and facilitates comparisons with formulae

in the literature '. In our units, each nucleus has a kinetic energy pei nucleon,

E = Mw(~( — 1), given in terms of the Lorentz factor, 7 = (1 - /?2)~1/2, and the



nucleon mass, MN. The electromagnetic potential is the sum of the two terms

coming from nuclei a and 6, respectively

A"(x) = A»(x) + At(x)

with corresponding currents

The four-potentials are obtained from Maxwell's equations

d^Au{x) - ST^A") = J"(x). (14)

The development of these equations is straightforward; we work in the rest frame

of each respective nucleus, solve for the four potentials in momentum space, and

then Lorentz boost the result to the frame in which the collision is taking place.

We shall specialize to spin-zero nuclei, and use time-reversal invariance; in the rest

frame of a nucleus of charge Z

° = &*28(Q0)Zfz(Q2)GE(Q2)

0 ^ 0 , (15)

where fz(Q2) is the momentum distribution of a proton in the nucleus, and

GE(Q2) is the electric distribution function of the proton. Details of this de-

velopment are given in Ref. 1 3 ) . From (14) and (15), the four-vector potential

associated with nucleus a is a function of the four-momentum Q, and in the center-

of-momentum frame of the heavy ions, is given by

Qx -6/2) ,



(16)

The potentials from nucleus b can be easily obtained from (16) by the substitutions

3. CROSS SECTIONS FOR PAIR PRODUCTION

If we focus on the second-order processes expressed by the diagram in Fig. 1,

the relevant S-matrix element is given by

< k | Sab | q > = H ) 2 f°° dr [T dr' < k | Ko(0, oo)K0{oo, r)

(17)

where

l 9 > = | x i - ) > , | ^ > = | x i + ) > , (18)

and 5&O is obtained from 5at by reversing the signs of the velocity /? and the impact

parameter 6.

The pair production cross section is given, adequately for the purposes in hand

', by the expression

E E
k>Oq<O



The amplitude for the diagram in Fig. 1 was given in (17) and can be understood

as follows:

a b
Fig. 1. Direct (a) and crossed (b) Feynman diagrams for pair production in a heavy-

ion collision.

In the center-of- momentum frame of the colliding nuclei, the classical elec-

tromagnetic fields of the nuclei provide a source of "off-shell" photons with four

momenta given as Qa, and Qb, respectively

(20)

The lepton and antilepton carry four-momentum k and q, respectively, and the

total momentum of the pair

P = k + q. (21)

The frequencies of the virtual photons are explicitly given by

" . = 5 '

(22)



- 0{k, - q.)

The photon and lepton part of the diagram follow the usual Feynman rules so that

P = Qa + Qb • (23)

Thus with a modest amount of analysis, the amplitude (17) can be written as

^ ^ : 0 \ , (24)

where T± is the transverse momentum transfer

fx = Qa± - Qb±- (25)

The transverse momentum is not fixed by the kinematics, but depends on the

distribution of momenta carried in the classical fields. The form factor F(Q2)

expresses the momentum dependence of the vertex on the nucleon and nucleus

distributions and is obtained from (18) for either nucleus a or b as,

F(Q) = 4*Zfz(Q)GE(Q2). (26)

The reduced Feynman amplitude T in (17) relates the coupling of the photon

lines to the outgoing fermion lines in terms of a projection matrix for the interme-

diate fermion state

where



(28)

H±[p±) = a± -Pi. +7o-

The four-momentum p is that carried by the intermediate lepton state in Fig. 1

P = {ui,px,Pl), (29)

whose components {oj,pe) depend on 0, as in (31) below. The momentum in

intermediate states is composed of parts transverse and parallel to the mot ion of

the heavy ions, p = p± + pzez, and the frequencies u>a and u>6 are related to the

lepton energy u through

ua = E[+) - W, wt = u - E(-\ (30)

The frequencies and intermediate longitudinal momentum are thus determined as

functions of 0

(31)

2

Utilizing the above analysis, the expression for the cross section (19) becomes,

rdkzdqt<PPL

J (2TT)< J {2*y

x I Fa{Ql)Fb{Q\) |2| Tkq(^j^ : /?) + Tkq(^±^ : -0) |2 . (32)

The expression (32) will be evaluated, without further approximation, using the

Monte Carlo technique described in the next section.



4. MONTE CARLO INTEGRATION

The evaluation of (32) entails the integration of a positive function over eight

variables. We can transform all of the integration into new variables which span

the interval (0,1), as follows. The rule, which greatly simplifies the numerics, is to

scale all longitudinal momenta by the LGrcntz factor associated with the collisions.

Thus we map the coordinates (kx,qx) onto a vector, K, SO that

foo foo too ri-n

/ die, / dqz= KdK / d<f>K . (33)
J-oo J-oo JO JO

The magnitude of the vector K. is jcaled by the Lorentz factor 7 associated with

the collision. The integration over F± is given as

Pu

P±dP±rd<f>±. (34)
JO

The integration on the magnitude of P± is scaled with the mass of the lepton and

is carried out with a simple quadrature formula, thus effectively mapping the inte-

gration onto the interval (0, Pu). The integration on the transverse momenta of the

two photons is given by the following transformation which is applied equivalently

to both a and b.

Jd2QL = C J*2d0Un0j2* d<f>, (35)

where the constant C is the frequency carried by the field associated with either

nucleus a or b, given in (22),

C = w/7 .



Thus we can transform (32) in terms of an eight-fold integration over *. unit hy-

percubo having the form

/•i

cr = Fo dxxdx2 • • •dx8f(xux2,-• • ,zs) , (36)
Jo

where Fo is chosen so that / < 1, and where the coordinates {i,} are simply related

to the set {K, <f>K, P±,<j>j.,0a, <Ao, #6i 4>b}- At this point there are several different ways

to proceed. We shall discuss two approaches that are equally successful.

Method 1

In the present case we have found it necessary to start with an estimate Fo,

which is periodically improved by noting the largest value of / for varying numbers

of Monte Carlo points. The algorithm proceeds by making throws in a nine-

dimensional space, y = {J/J, . . . , y 9 } , where 0 < t/j < 1. We then calculate

*9 = f(yi,y2---,y&), (37)

so that Xj lies in the range 0 < i j < 1. The throw is said to be successful if 19 > j / 9 .

After T throws, let the number of successes be 5. The cross section is given by

o- = 0̂ Y , (38)

with a proportional error in cr/Fo of

i i)!. (39)

Clearly, a good estimate of Fo is desirable. We are able to compensate for the lack

of a priori knowledge of FQ by analysing each throw for a set of Fo in parallel. At



the end of a run, the estimates of a thereby obtained from (38) were interpolated

to the best value of FQ inferred from the run itself. The improved value of FQ was

used in subsequent runs. In Fig. 2 we display the error A as a function of the

number of Monte Carlo points for a test run, A ~ 30 — 100/T1*.
25 r—

N

Fig. 2. Percentage error in Monte Carlo integration, A, vs. the number of Monte
Carlo points, N.

We observe a rapid and stable convergence of the sampling algorithm as described

above. Typical success rates were S/T ~ 10~3 — 10~4.

Method 2

In this approach, an eight-fold integration on the unit hypercube is approximated

by a sampling of the integrand T times and then taking

Fo T

where the set {xi{i), x2[i), • • •, xe(i)} denotes the ith sampling of the coordinates. If

these variables are uniformly distributed on the interval (0,1), then (40) is just the



Stiltjes definition of integration. Here, a single sampling of the coordinates requires

eight, independent pseudo-random numbers. Each evaluation of the function / can

be thought of as a statistical estimate of CT//O with a corresponding variance. Thus,

after T throws, the corrsponding error works out to be

^ ( i ) I / a ( t ) 1 - 1 x . ( i ) ) -ajFof , (41)
-\

so that both the cross section and its variance can be computed at the same time.

In both methods the error goes as 1/vT. This rate of convergence may seem

slow compared to the more sophisticated prescriptions utilizing Gauss points; for

example, using Kth order Gauss-Laguerre integration, the error goes as Ac =

l/T2K~1. However, in eight dimensions, the overall error p;oes as Aj/8 SO that

Monte Carlo wins. Generally, any calculation is a balance between accuracy and

economy; we summarize some of the features of Monte Carlo calculations which

we find advantageous.

• Both of the above Monte Carlo algorithms are basically very simple to use

without a great deal of specialized knowledge, and both methods vectorize

easily on supercomputers. Thus modern calculations can be effected with a

large number of integration points.

• Very complicated constraints can be placed on the summations, therby al-

lowing experimental "cuts" on phase space to be directly calculated. This is

explored in depth in the section on ir~p collisions.



s The integration can be "binned" in terms of other variables during the eval-

uation. Thus a variety of distributions can be directly computed without the

need for calculating difficult Jacobians.

• We are basically studying two-photon diagrams which entail eight indepen-

dent integrations. Diagrams of much higher order can be evaluated with this

approach. Although not discussed in these lectures, we have also examined

the radiative corrections to pair production, which reduces to a ten dimen-

sonal problem.

In the following two sections we shall discuss two very different application of these

techniques.

5. n, r PAIR PRODUCTION

In this section we study the effects of the nuclear form factors on the fi and r pair

production. In particular, we consider the symmetric collision of two gold nuclei

at RHIC energies. From (18), the charge current distribution in the gold nucleus

involves the product of the momentum distribution of a proton in the nucleus,

fz, times the electric distribution function of the proton, GE- For small values of

the momentum transfer, fz and GE are related to the Fourier transforms of the

gold and proton charge distributions, respectively. However, for large values of

Q2, these are difficult to determine experimentally '. Theoretical and empirical

models, as for example, perturbative QCD ^ ' , vector meson dominance "*, and

dimensional scaling *•' * give predictions at large Q2 which seem to agree with



the measured values of the magnetic form factor K Experimental tests of these

predictions for the electric form factor are presently unavailable.

Accordingly, we have chosen empirical form factors for both the proton and the

Au nucleus. For Au, we employ a Fermi function v/ith two parameters, which are

adjusted to fit low-energy elastic electron scattering data K This is shown in

Fig. 3 as the solid curve.

10

Q (GeV/c)

Fig. 3. The proton (dashed curve) and Au (solid curve) form factors as a function of
the magnitude of the photon four momentum in units of GeV/c.

The proton form factor is assumed to have a dipole form ' given by

GE(Q2) =(l + %) , Ap = 0.7lGeV2/c2 . (42)

This function is depicted as the dashed curve in Fig. 3. These curves illustrate, in

a simple way, that the electromagnetic vertex is strongly suppressed for values of

Q2 greater than about one GeV2/c2.

In Fig. 4 we present lepton pair cross sections calculated for colliding beams of



Au nuclei at a bombarding energy per nucleon of 100 GeV. Here, we give the total

cross section in units of CT0

CTo = -Ml*- (43)

as a function of the intrinsic mass of the lepton, Me, treated as a continuous

variable. Thus, there are only three physical masses in the figure, 5.11 x 10~4,

1.06 x 1O~2, and 1.784 GeV/c2, corresponding to the electron, muon, and tauon

respectively. The dotted curve represents results obtained with point charge nuclei,

the dashed curve results obtained with the proton form factor, and the solid curve

results obtained with form factors for the proton and for the Au nucleus included.

We note that for masses less than about 10 MeV/c2, neither the proton nor the

Au form factor substantially affects the cross section. Thus, the total electron pair

production is not strongly affected by the details of the nuclear currents. However,

for values of the mass near about 2 GeV/c2, the results with the proton form factor

are more than an order of magnitude smaller than the corresponding point charge

results, and the results which include the Au form factor are reduced by more than

a factor of 103. Hence, tauon pair production is extremely sensitive to these form

factors. The muon pair cross sections are suppressed by about a factor of four

compared to the results with point nuclear currents.
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Fig. 4. Dependence of pair production cross sections on the intrinsic lepton mass Mt
for collisions of Au + Au at 100 GeV per nudeon. The ratio of the cross section to the
reduced cross section ffo is plotted vs. Me- Full line: result including Au and proton
form factors; dashed line: result including only the proton form factor; dotted line: point
source result.

Y
Fig. 5. The pair cross sections for colliding beams of Au nuclei as a function of the

Lorentz 7 of the beam. The reduced cross section CTQ 'S defined in (43). Full line:
electrons, dashed line: muons, long dashed line: tauons.

A comparison of the electron, muon, and tauon total cross sections as a function



of the Lorentz 7 of the beams is given in Fig. 5 for collisions of Au nuclei. These

results include both nuclear form factors as described previously. Note that the

results for the electrons are equivalent to the same results using point nuclear

currents. Values of 7 about 3 and 10 approximately correspond to experiments

at the AGS and at CERN. Here we see that for all practical purposes, the form

factors completely suppress the tauon cross sections and reduce the muon cross

sections by more than a factor of 100 at 7 = 10. Thus it is only at the highest

bombarding energies, such as will be attained at RHIC, that heavy icptons are

produced with large multiplicities. These r^-iiis are summarized in Table 1.

Table 1

Results for the coherent muon and tauon pair production for 100 GeV per nucleon

colliding beams of Au nuclei.

y. (mb) T (mb)

Point Source 770 2.7

Form Factor 200 2.8 x 10~3

The role of the nuclear form factors in heavy lepton production can be un-

derstood in greater depth by examining their effects on the pair distributions in

rapidity, transverse momentum, and invariant mass. These are shown in Figs. 6,

7, and 8, for muons.
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Fig. 6. Rapidity distribution of dimuons produced from colliding beams of Au nuclei
at an energy per nucleon of 100 GeV. The solid curve is the calculated result including
the proton and Au form factors, and the dashed curve is the result from point charge
nuclei.
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Fig. 7. Transverse momentum distribution of dimuons produced from colliding beams
of Au nuclei at an energy per nucleon of 100 GeV. The solid curve is the calculated result
including the proton and Au form factors, and the dashed curve is the result from point
charge nuclei.

Again, we are considering colliding beams of Au nuclei at 100 GeV per nucleon.



In Fig. 6 we show the \i pair cross section as a function of the rapidity. The solid

curve gives the results which include the nuclear form factors, and the dashed

curve gives the results for point nuclear currents. The rapidity of the Au beams is

approximately Y = ±5.29. Again, we are considering colliding beams of Au nuclei

at 100 GeV per nucleon. In Fig. 6 we show the ft pair cross section as a function

of the rapidity. The solid curve gives the results which include the nuclear form

factors, and the dashed curve gives the results for point nuclear currents. The

rapidity of the Au beams is approximately Y = ±5.29. Thus we observe that

the form factors reduce the cross section by about a factor of ten and result in

a distribution which is sharply confined to the region of central rapidity. In Fig.

7 the distribution in transverse momentum, PT, is compared for the two cases.

We note that the two curves are approximately the same for values of PT near

zero. The Compton momentum of the / is about 0.1 GeV/c; at this value of PT

the nuclear form factors have reduced the cross section by an order of magnitude,

and hence the resulting distribution is concentrated at small values of PT. The

distribution as a function of the invariant mass is shown in Fig. 8. Again we are

comparing the results of calculations with form factors and with point currents. In

this case the threshold for the mass distribution is about 0.2 GeV/c2, and we see a

strong reduction in the distribution due to the form factors. For T pair production,

these effects are even more pronounced.
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Fig. 8. Invariant mass distribution of dimuons produced from colliding beams of Au
nuclei at an energy per nudeon of 100 GeV. The solid curve is the calculated result
including the proton and Au form factors, and the dashed curve is the result from point
rharee nuclei.

6. TZ-P COLLISIONS

The emission of electron-positron pairs has been observed "•*") in x~ p collisions

with corresponding pion momenta of 16 and 17 Gev/c. The experiments detected

pairs over a limited range of invariant pair mass, given by 0.2 < M < 1.2 GeV/c2.

A large peak near M = 0.8 GeV/c2 was observed. This peak is well understood as

resulting from the direct electromagnetic decay of the p and u mesons, p —> e+ e~,

and u —* e+ e~. A continuum of pairs is also seen at lower invariant masses.

These pairs were deemed anomalous, as conventional hadronic mechanisms failed

to explain the data. We demonstrate here that an ab initio calculation of the

two-photon mechanism produces results that are in quantitative agreement with



the continuum data.

The experimental results of Refs. "' and ™) a r e shown in Figs. 9, 10, and 11.

The qualitative features of the cross sections are clear. The cross section decreases

with increasing pair mass, decreases with increasing Feynman x (defined as the

total longitudinal momentum of the pair divided by the maximum value allowed

kinematically), and decreases with increasing transverse momentum.

If we calculate the two-photon process in the limit where the relative motion of

the pion and proton is treated classically *"), the total cross section for electron-

positron pair production is given by (19). For a 17 GeV/c pion, we can use a

straight-line trajectory. The scattering amplitude has the two terms corresponding

to crossed and uncrossed photons as shown in Fig. 1 and as discussed in Section

2. Here A£(q) and A%(q), which appear as prescribed external fields, are given by

the photon propagator times the matrix element of the proton or pion current, as

given in (15) and (16). However, the resulting expression for the proton current is

incomplete. The most general form of the electromagnetic current of the proton

13)
is

r{p'a\pa) = evP\p') [Y Fx{p' - p)] u<

e ,

~~2M~P
U (44)



10'

1 0 1

10 '

* 1 0

10 ":

10 '

10"

h
. ... M i r

^^sJ i \

'"' " Sum-Flip

Non Spin-Flip

• Ref. a)

Ref. b)

A Ref. c)

I I

0.0 0.2 0.4 0.6 0.8

X

1.0

Fig. 9. The differential cross section for electron-positron pair production us. Feyn-
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By inserting explicit expressions for the proton spinors in (44) and multiplying

by the photon propagator, the vector potential from the proton in (16) becomes

where the term which corresponds to non-spin-flip events is

_-.f6/2

(45)

a»(b: 9 ) = O, a'(b : q) = 0 a[+\b : q) .

The electric form factor of the proton is given in (42) ^K The second term in



A£(q), which involves both F^{q) and F2{q), corresponds to events in which the

proton spin flips. This term yields

e-,q-b/2

£.1*1 p Hz ' I HX

e e-w-?/2
Sa»(b:q)=2ir—flfr-fffr) 2 + , 2 i qz GM(q2) ,

e e-'W2
: g) = -2TT — ^ ( ( j o - ^ ) 7 2 ^ 2 a (9* + *9

2M g| + 7 ?x

(46)

where the magnetic form factor of the proton, G\f(q2), is normalized so that

GM{0) = 1 + K = 2Mpy.pl'e, where/ip is the magnetic moment of the proton. We use

the same dipole form for the magnetic form factor, G\f(q2) = (1 + ̂ )(1 + ?2/Ap)~2 ,

as for GE(Q2)- For the spin-zero pion the electromagnetic current is given by

. (47)

which produces a similar result for A%(q) as is given in (16); in the center-of-

velocity frame, A^{q) is given by (45) with /? —• —0 and b —» —b. We utilize a

monopole form for the electric form factor of the pion, Gsiq2) = (1 + 92M*)~\

where Â  = 0.59 GeV2/c2 ^ ) , fhe expression derived here for the total cross

section is Lorentz invariant and is most easily evaluated in the center-of-velocity

frame. Finally, the crossed photon term, which contributes to (19), is added

coherently to the direct term.
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Fig. 10. The differential cross section for electron-positron pair production vs. the
pair mass. The dashed curve is the result omitting the spin-flip terms. The data are
from Ref. 9).

In summary, we take the classical limit on the relative motion of the proton

and pion of standard QED perturbation theory for the two-photon process. The

arguments of Ref. ) indicate that the wavelength of the relative pion-nucleon

motion is sufficiently large and the electromagnetic field sufficiently smooth that we

are well into the classical region. In this region, the matrix element of the current,

which couples the proton or the pion to the electromagnetic field multiplied by the

photon propagator, takes the form of prescribed electromagnetic fields that have

been boosted from the rest frame to a frame with velocity — /?, as given in (45) for

the non-spin-flip term, and (46) for the spin-flip term.

The eight-dimensional integration required to calculate the total cross section in



(32) is done utilizing the Monte Carlo technique described earlier. We impose on

the Monte Carlo integration the experimental cut on the pair mass, 0.2 < M <

0.8 GeV/c2. Points which correspond to invariant masses outside this region are

counted in the overall normalization of the calculation, but do not contribute to

the data of present interest, and thus the integrand need not be calculated for

these points. The total cross section for electromagnetic pair production is about

55 fib, of which only 0.5 fib lies within the cut. The differential cross sections follow

simply by binning the points as a function of the relevant independent variable.

The results of a calculation which used about 25 x 106 Monte Carlo points are

shown in Figs. 9-11. The contributions which arise from the non-spin-flip current,

(45), arc presented as the dashed curves. These results are significantly below the

data. The cross sections for production from the currents given in (45) are large

' for small electron and positron momenta. However, in the kinematical region

imposed by the cut on the invariant mass, this process produces a very small cross

section. In addition, the direct and crossed terms interfere destructively to reduce

the predicted cross sections by two orders of magnitude.

The contributions for electron-positron pair production, including the magnetic

spin-flip term, (46), are also shown in Figs. 9-11 as the solid curve. We see that the

results are in reasonable agreement with the data. We stress that the calculation

is made ab initio with no adjustable parameters. Although the overall agreement

is good, the cross sections in Fig. 9 lie a little below the data for low Feynman

i. This may be due to our use of the lower cut on the invariant mass at exactly



0.2 GeV/c2. If we decrease this value slightiy, the cross sections at low x and

low px are enhanced. The difficulty might also lie in our neglect of the final-state

distortions of the electron and positron. The cross sections for the slower-moving

leptons might well be somewhat higher if distorted waves were used.

The spin-flip term, (46), is of order q/Mp, as compared to the leading term, (45).

The reduction due to this factor is more than compensated for by two features of

the spin-flip current: 1) the current has transverse components, and 2) the 0 and

z components are proportional to the transverse momentum of the photon. Thus

the spin-flip current produces pairs at the large values of transverse momentum

emphasized by the experimental cut on the invariant mass.
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Fig. 11. The differential cross section for electron-positron pair production vs. the
transverse momentum of the pair. The dashed curve is the result omitting the spin-flip
terms. The data are from Ref. K

We conclude from the general quality of the agreement of the calculation with

the data that the lepton pairs observed in Refs. ^ and ' are produced, to a



large extent, via the two-photon mechanism specifically by the magnetic part of

the proton current. The calculation itself allows some internal consistency checks

on this view of the physics. The presence of the proton and pion form factors

reduces the predicted cross sections by less than a percent. This indicates that the

cross section arises from a region where the scale for the momentum or energy of

the virtual photon is given by several hundred MeV or less. At these momentum

transfers, the dominant response of the proton or the pion is the coherent elastic

response, although the excitation of the nudeon to a delta, or the pion to a rho

might also contribute a non-negligible amount in this kinematic region. We note

that the coincidence data given in Ref. ^ are consistent with this low multiplic-

ity interpretation of the data. This relatively low momentum transfer from the

hadrons does not justify a quark level calculation of the two-photon process, as was

done in Ref. ^K We further point out that the independent quark-level processes

are suppressed by a factor of Z\ Z\, with Z, the charge of the quark, and thus can

only become the dominant term in kinematic regions where the elastic form factor

suppressec the coherent elastic term. In our calculation we integrate over impact

parameters starting at zero. For impact parameters less than one Fermi, the pion

and proton will undergo strong interactions which would invalidate the pure elec-

tromagnetic calculation done here. However, we find that non-negligible numbers

of lcpton pairs are emitted out to impact parameters of greater than one hundred

Fermis. Thus, neglecting the contribution which arises from impact parameters

below one Fermi would have little effect on our results.



Electromagnetic lepton pair production in particle collisions is important for

several reasons. It is well understood that the two-photon process can produce

large numbers • ' of soft pairs. Here we have found that it can also produce

pairs with significant transverse momentum, which could provide a background

for the lepton pairs emitted in heavy-ion collisions. If the lepton pairs are to serve

as a probe of the quark-gluon plasma, this background must first be understood.

Also, the Lorentz-contracted fields, represented by the vector potentials of (45) and

(46), become very large for the ultrarelativistic heavy ions that will be produced at

RHIC and perhaps at the SSC. In this case, the perturbative approach utilized here

will certainly be inadequate. Lepton production would then offer the opportunity

to study QED in a region where it is not perturbative. The present results are

needed as a baseline for this study.

7. CONCLUSIONS

We conclude by reviewing the questions raised in the Introduction concerning

electromagnetic mechanisms for pair production. The present work supplies de-

tailed information on the backgrounds necessary to interpret analysis of heavy-ion

dimuon data. We have shown that muon production in heavy-ion collisions is

largely coherent over distances of the dimension of the nucleus. In the case of

tauons, the form factors break this coherence. The same result should be true for

even more massive particles such as W-pairs. Thus it is expected that the incoher-

ent production will dominate the two-photon mechanism for particles as massive



as the tauon or W. In summary:

• We have calculated heavy lepton pair production in the two-photon approx-

imation. We have employed Feynman perturbation theory to go beyond

equivalent photon formulations, and in particular, to incorporate correctly

the transverse momentum dependence.

• We have shown that form factors must be included in calculations of muon

and tauon pair cross sections. We employed the best fits to the elastic electron

nucleus scattering data that presently exist. This determines the form factor

for Q2 less than about one GeV2/c2. There are no form factor data for heavy

nuclei at larger values, and the sensitivity of the cross sections to the form

factor in this region is not known. We note that other models, which fit the

electron scattering data less well, differ in their cross section predictions by

as much as a factor of ten. Thus, these effects need to be explored in greater

depth.

• There is a need for measurements which will test theories of two-photon pair

production and its scaling with charge, mass, and energy. If these issues are

settled, the two-photon pair production could be a method of probing the

form factors of heavy nuclei at large values of momentum transfer.

Our future work will address incoherent mechanisms, the effects of inelastic

structure functions, and central collisions.
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