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THE BASIS SPLINE METHOD

AND ASSOCIATED TECHNIQUES

C. Bottcher and M. R. Strayer

Physics Division, Oak Ridge National Laboratory

Oak Ridge, TN 37S31

ABSTRACT

We outline the Basis Spline and Collocation methods for the solution of Partial

Differential Equations. Particular attention is paid to the theory of errors, and

the handling of non-self-adjoint problems which are generated by the collocation

method. We discuss applications to Poisson's equation, the Dirac equation, and

the calculation of bound and continuum states of atomic and nuclear systems.

We can forgive a man for making a useful thing
as long as he does not admire it.

The only excuse for making a useless thing

is that one admires it intensely.

All art is quite useless.
OSCAR W I L D E (The Picture of Dorian Gray)



1. THE BASIS SPLINE AND COLLOCATION METHODS

1.1 Basis Splines and their Genera t ion

Splines of order A' are functions S"A (x) of a single real variable belonging to the

class CA~J with continuous (A1 —2) derivatives. Each spline is associated with

a set of points {x^}, called knots; we take the knots to be distinct and ordered,

Xh < Xk+\- Between each pair of knots, the spline is a polynomial of degree Af - 1

(the order refers to the number of coefficients); at each knot, the function and

derivatives up to the (Ar —2)'1' are continuous. The (A''—l)lh derivative is bounded

but discontinuous. We shall consider only orders Af > 3, though piecewise linear or

tent functions (Af = 2) were useful at an earlier stage in development of numerical

analysis, particularly as the simplest implementation of the finite element method.

Splines have long been used for curve fitting, but the introduction of basis splines

converted the concept into a power technique. Given a set of knots {xk}, the basis

splines of order Af are a set of functions B^(x) such that any spline 5 A ( i ) is

identically a linear superposition

( x ) . ( 1 )
k

It is easy to see that B£ (x) is uniquely defined by the condition that it is zero

outside the range of A' + 1 consecutive knots xh, x i + 1 , . . . , Xk+//. Such a function

of order Af = 3 is illustrated in Fig. 1. At either end of the range of knots, the

basis splines can be modified to incorporate boundary conditions. As an example,

Fig. 2 shows how a set of splines can be fitted together to represent functions



£
5

Fig. 1. Basis spline of order M = 3. The knots are denoted by open squares, and the
collocation points by filled circles.

Fig. 2. Basis splines of order 3 satisfying the boundary conditions (2).



satisfying the boundary conditions

</•(*,) = (), v'-V.v) = 0 , (2)

where the prime denotes diiferentiation. Several algorithms are available to con-

struct basis splines from the continuity conditions at the knots, and the boundary

conditions at the endpoints 1—4.5^ an(j w e refer the reader to the literature rather

than pursue this rather technical aspect of the subject here.

Given the basis splines, interpolation is straightforward. A function il>(x) is

approximated by the interpolant i/>, where

4'(x)^"£i'kDk(x), (3)

and the i^>k are determined if t/>(x) = ip{x) at a set of N data, or collocation, points

{£<*}• We have only to solve

£ Bak4'k = 0O , (4)

where Bak = Bk(£a) and 0a = V'(6»); the order M is omitted for simplicity. It is

necessary and sufficient that the matrix B be non-singular: this will always be the

case if we limit our considerations to odd orders, and choose the collocation points

halfway between the knots. Further, as is clearly seen in Fig. 1, the elements of

B are positive and largest on the diagonal, implying that the inversion of (4) is

very stable. It is convenient to have a notation for the inverse of B: we write the

elements as Bka so that

Formulae for derivatives and integrals are readily derived from (3)-(5)



1.2 Collocation Methods

The collocation method for solution of an operator equation, formally written

as

is intimately related to the interpolation procedure of (3) and (4). We obtain N

equations for the unknowns {ifrk} by requiring that

= 0 at i = &,. (7)

Though the method is perfectly applicable to non-linear problems, we are mostly

concerned with linear operators L, in which case (7) becomes

E 0fc£[fifc]x=£Q = 0 . (8)

If we use (4) and (5) to eliminate the coefficients {4>k} in favour of the values of

the solution {4yk} at the collocation points,(8) is replaced by

N

E LParl>a = 0 , (9)

where

I S o ^ B b L [ ^ = 0. (10)

fc=i

As a simple example, consider the non-rclativistic Schrodinger equation in one

dimension,
r i ^ i

= o , ( i i )



where V is a local potential. An agreeable feature of the method is that expressions

such as V'i/' are replaced by V'^I/'Q, where Va = V'(£c,). In other words, local

operators come to be represented simply as diagonal matrices of their values at

the collocation points. Non-local operators, notably the kinetic energy, appear

complicated at first sight. In summary, (11) is replaced by

N

X](-^»0 + K,<5a0)i/>;3 = Exl>a , (12)

where

1 N

" k=\

We shall see in Section 2 that the analysis of (6)-( 13) is readily extended to

problems in two and three dimensions.

1.3 Completeness and Convergence

Given a formal interpolation procedure, such as that implied by (3)- (5), the

issue of completeness refers to how well the interpolant rp{x) represents ^>(z) at

points other than the exactly fit points {£Q}. In other words, how does the error

S(X)=\TI,(X)-J>(X)\ (14)

behave globally? A simple estimate is obtained from the Dirichlet functions £?fc(x),

which arise when 0 is expressed directly in terms of {ipQ}. From (3)-(5), we find

that



A typical Dirichlet function is shown in Fig. 3. It is evident that BQ(<f/j) = 6ap

by construction, but at other points, Ba is non-zero and oscillating in sign. The

values of \Ba\ at successive turning points ^ fall off rapidly, in fact approximately

as

°-3exp[~w^j-
for knots with a uniform spacing A '. At the first minimum, however, Ba ~ —0.3.

Thus the maximum of the error function (14) is estimated to be

- 0.3max - ipa\ . (16)

0.0

-0.5
- 4 -3

Fig. 3. Dirichlet function of order 3: B(x) is defined in (15).

A large error is encountered if 0 has a discontinuity, as seen in Fig. 4, which

depicts the result of trying to fit a step function. However, in virtue of the rapid



rate of falling off of Ba(x) with \x — £o |, the overshooting oscillations in the fit

also die off rapidly with distance from the discontinuity. This contrasts with the

notorious behaviour of Fourier or orthogonal polynomial interpolation.

When splines are used to fit smooth functions (of class CA/, M > 1, say), the

solutions to operator problems usually converge uniformly as the number of points

is increased. Uniformity implies, in quantum mechanical problems such as (11),

that the wavefunction converges at the same rate as the eigenvalue. A further

point, of great practical significance, is that the rate of convergence improves as

the order of the splines increases: usually £ ~ A-jV"+1.

3

Fig. 4. Result of fitting a step function S(x) with splines of order 3.

This is illustrated by Fig. 5 which shows the errors in the lowest eigenvalue of

(11), where V is chosen to be a Morse potential 4 ) . Usually Af = 7 is adequate

for practical purposes. Though spline interpolation remains stable for any order,



a trend of diminishing returns is usually observed for M > 7; for increasing M

more splines may be needed to accommodate the boundary conditions instead of

representing the solution.

1 0 •»

i<r2

io-3

10 "4

10 s

10"*

io-7

io-

i o •'

Fig. 5. Errors in the lowest eigenvalue of a Morse potential vs. the number of grid
points n for different discretization algorithms. Reading from the top down, the curves
refer to the 3-point finite difference method, and the basis spline-collocation method
with splines of orders 3,5 and 7 respectively. The model is described in more detail in
Ref. 4>.

1.4 Techniques for Non-Self Adjoint Problems

The most general collocation-variational method for the linear operator equation

Lt/» = 0 is obtained by expanding T/> in a righthand basis ujt, and projecting the

equation onto a lefthand basis va,

= 0 . (17)

The collocation method results from the choice va = 6{x - (a), and the self-



adjoint variational method from the choice va — ua. For a general choice of va,

including that of the collocation method, (17) is not self adjoint. Though problems

which are not self adjoint are not usually emphasised in textbooks, they pose no

great difficulties. In some branches of physics, such as transport phenomena and

quantum optics, non-self-adjoint formulations may be more natural.

We are interested in the stationary eigenvalue problem of quantum mechanics,

L = H — E, for which the collocation procedure results in a non-self-adjoint matrix

problem,

(is)

where the right and lefthand eigenvectors are biorthogonal 4>\tp^ = 6x^. If we

define a matrix *& whose elements are typx = xfrp , a similar matrix <&, and a

diagonal matrix of the eigenvalues e, (18) becomes

$ 6 . (19)

The two equations (19) are only consistent if

# - • = $t5 $- i = ^ t (20)

It is necessary and sufficient that the eigenvectors be linearly independent. From

(19) and (20} the reconstruction of the matrix from its eigenvectors is given by

H = * e # - ' = <£e& . (21)



The significance of (21) is that H may be factored into a self-adjoint operator H,

and a positive, definitive self adjoint operator S"1,

H = S- 'H . (22)

where

H = $ e * t , S = * * f . (23)

If the eigenvectors are linearly independent, S is non-singular and can be inter-

preted as an overlap matrix between a set of linearly independent basis functions.

The factorization (23) converts (19) into a generalised eigenvalue problem,

H * = S*e . (24)

The factorization (22) is necessary and sufficient for H to possess a real spectrum.

It is instructive to pursue the physical interpretation of the lefthand eigenvectors.

Given (18), the only consistent prescription for the expectation value of a local

operator a(x) in the eigenstate A is

(25)
a

This agrees intuitively with the usual formula of wave mechanics,

< a >= / dxij>[x)~a(x)-i{)(x),

if we identify

^ A ) {X) (26)



and {Wo} are the quadrature weights associated with the points {£„}. The iden-

tification (26) suffers from the drawback that the weights have a dependence on

A and do not coincide identically with the conventional definition of numerical

analysis,

Wa = / dxB{x) .

Nonetheless (26) can sometimes be used to good effect, as we shall see in Sections

1.5 and 2.2.

1.5 Representation Theory

The concept ot a faithful representation of a differential operator is taken over

from the mathematical literature '. For our purposes, it means that the repre-

sentation faithfully simulates the familiar intuitive properties of the differential

Cti'culus. No approximation can reproduce all properties exactly, but we can base

our development on the following choice. Given the operator D = d/dx, we require

that its matrix representation D satisfies a subset of identities

= XM-i , (27)

analogous to those for differentiating the monomials

) = ^ r • (28)

Insofar as the basis splines belong to the class C^~2, (27) holds identically for

M < M — 2. In general, the identity is modified near the boundaries, since



the polynomial representation must be constrained to accommodate the boundary

conditions.

We remarked above that differential operators in the basis-spline-collocation rep-

resentation had a rather recondite appearance. However, when the numerical pre-

sentation is examined, it becomes obvious that the operators have the qualitative

and intuitive structure expected from elementary finite difference considerations.

An example will make the point more clearly. If the second derivative operator

is constructed as in (13), with periodic boundary conditions on a mesh with unit

spacing and spline order M = 3, the elements of the resulting matrix are given by

Dal+v = (•••. -0.0049,0.0286, -0.1665,0.9705, -1.657,

0.9705,-0.1665,0.0286, •••) .

It is easy to see that the sum across a row is zero to good accuracy, and that the

pattern of elements resembles the finite difference representation

D(
Q

2U, = ( • • • , 0 , 1 , - 2 , l , 0 , - - - ) -

These properties of Z?'2' make it a faithful representation of d2/dx2.

To develop these ideas more quantitatively, consider the simplest representation

of a derivative, by a single backward difference,



D =

1 0 0 0 -

-1 1 0 0 •

0 - 1 1 0 •

1 0

- 1 1

(29)

This representation satisfies an identity of the form (27),

o = e , (30)

where \oa — 1 ^a a n d ta = 8a,\. In general x iS the eigenvector of the modified

operator D corresponding to a zero eigenvalue, where

The accompanying righthand eigenvector u>0 defines a set of quadrature weights

in accordance with the prescription (26),

ulD = ef , (32)

where u>0 is so normalized that u>01 = 1. The significance of (32) is seen by applying

both sides to an arbitrary vector -0,

UJQDJP = 0 [ , (33)

which is the familiar formula for the integral of a derivat've. Higher moments are

obtained by repeatedly operating on e with D~ ' ,

(34)



In summary, the formal requirement of fidelity (30) leads to a quadrature formula

which is identically inverse to differentiation on the lattice. This, in turn, leads to

an analogue of Green's lemma as an identity on the lattice, and finally to exact

conservation laws on the lattice '.

2. APPLICATIONS

2.1 Atomic and Nuclear Collision Problems

One of the most powerful techniques for studying atomic and nuclear collisions

is the numerical Time-Dependent Hartree-Fock (TDHF) method. This amounts

to solving a set of partial differential equations in three spatial dimensions, in

addition to time. Most current work is based on cartesian, rather than curvi-

linear coordinates. For a system with A independent particle orbits, the orbital

wavefunctions satisfy

H = TX + Tv + Tt + V { x , y i z \ t ) , (35)

where

The potential energy is the sum of the self-consistent field V, and an external

time-dependent part U, which in atomic physics would be provided by the nuclear

motion. The self-consistent field V depends on the orbitals through Poisson's

equation,



V 2 V = - 4 7 T £ > K | 0 A - | 2 , (36)

where TIK is the occupancy of the A'1'1 orbital. Thus the equations are coupled

through nonlinear interactions, though the nonlinearity is very weak in atomic

physics. The foregoing presentation is rather schematic — the reader is referred

to the literature "•'•°^> for an explanation of the complications arising from spin

and the Pauli exclusion principle.

The coupled set (35) and (36) are ideally suited to the basis spline-collocation

approach. The procedure of (7) is generalized by expanding the vvavefunction in

products

tl>(x,y,z) = £> l j f cB'(x)fl J(y)£*(3) • (37)

For simplicity of exposition, we assume that the same set of splines is associated

with each coordinate. In collocation space, we find that the representation of the

Hamiltonian analogous to (12) is given by

&,£,)*o.a'W&T.V. (38)

where T*a, is given by (13).

The equations (35) now have the form

i-ij> = HV- , (39)

where H is the sum of block matrices of a rather simple form. Thus algorithms

which decompose into canonical operations of the form



Ht/> — V' , (40)

can be implemented eiiiciently on supercomputers with vector and parallel capa-

bilities. Such an algorithm is used for tune propagation. If time is divided into

small steps r,

V>(« + r) = exp[-iH(t + r / 2 ) M 0 , (41)

with an error of order O(T3). The exponential can be expanded in a power scries

using only operations of the form (40).

Propagation in time is only one aspect, and probably the simplest, of the com-

plete solution of a collision problem. In the following sections, we treat the other

aspects in turn:

• Solution of Poissor.'s equation (36).

• Construction of initial conditions by solution of the stationary eigenvalue

problem.

• Extraction of continuum amplitudes by projection on final states.

2.2 Poisson's Equation

It is convenient to rewrite Poisson's equation (3G) as

(t-Tx-Ty-TI)<f> = 27rp1 (42)

where Tx is the kinetic energy operator associated with the x-coordinate, as before,

and e is a small positive quantity. This equation is to be solved in a finite domain



ft, bounded by a closed surface E, with the boundary condition that the normal

derivative is known on £,

| ^ = S ( 5 ) , S G E . (43)

The function g(S) is usually constructed from a multipole expansion. It is impor-

tant that (42) and (43) be consistent in the sense of satisfying Gauss's theorem

for the total charge within 17,

Q= [ pdr = / gdS . (44)

To incorporate the boundary condition (43), we transform the source in (42),

[e-T,-Ty- Tz)4> = 2irp = 2K\P - g(S)S(S)) , (45)

so that the righthand side integrates to zero over Q. Introducing a basis spline

expansion, (45) can be discretized by the methods of earlier sections,

( 6 - T r - T y - T : ) 0 = 27rp, (46)

The boundary delta-function 8(S) is written as a sum of Kronecker deltas with

appropriate weights. The old and new solutions, </> and <j>, differ only by a constant

in their exact (or continuum) representation. However in their matrix representa-

tion on a lattice, the relationship is more recondite. Suppose there exists a pair of

left and right eigenvectors corresponding to a zero eigenvalue of T = Tx + Ty + Tz,

O, , 0 t ( £ - T ) = O, . (47)

Then 4> a n d 4> differ by a multiple of 9, and (46) has a solution only if



0Tp = O. (48)

According to the principles of Section 1.5, in particular (26), the elements of 6

are quadrature weights, and (48) is the lattice form of Gauss's theorem. The

existence of a zero eigenvalue thus guarantees a well-behaved solution. A zero

eigenvalue mandates a zero gradient on the boundary: periodic boundary condi-

tions or dip/dn — 0 are acceptable, but V' = 0 is not.

The eigenvalue spectrum of T is readily constructed from that of T r ,

= nrjk , (49)

with the identifications,

7b = 0, ,TJOa = 1, ,T/0o = Wa, . (50)

We can transform the source and solution of (45) to the new basis provided by

(50),

xjk

J2 ^ ] • (51)

In this representation, the solution of (45) is simply,

h*\ = (£ - T< ~ Ti ~ Tk)~lP[*jk] • (52)

It follows from (48) and (51) that /3[OOOj = 0. Thus (51) and (52) define the solution

within a constant, which can be fixed by invoking the multipole expansion again.



2.3 Bound State Eigenfunctions and Continuum State Amplitudes

As stated above, we require a means of setting up the initial conditions of the

scattering problem (35), as expressed in matrix form (39). These usually state

that V is t n e stationary ground state satisfying

HVo = £oV>o , (53)

with a similar equation for the adjoint vector <£0. The matrix H is usually too

large to store explicitly in core, so we seek iterative methods which require only

"operator knowledge", meaning the implicit ability to carry out the canonical

operation (40). Such a technique is the damped relaxation method, described in

detail in a recent paper K The ground state eigenvector of the Schrodinger

equation is the limit of the iterates V> • generated by

^<K+O _ -0W = uR[H - EW] , (54)

where E^ = •0^A)tHi/''K), and R is a relaxation operator, designed to filter out

the high-frequency components of il^K\ A convenient choice for R is

An extensive theory has been developed on the optimum choice of y. and v to

guarantee rapid convergence.

Excited states if>m can be computed by enforcing the constraint of orthogonality

to lower lying states. Then bound state amplitudes can be extracted from the final

state wavefunction ip(T) by projection,



\2 • (56)

Amplitudes may be calculated in a frame moving with one of the nuclei by using

the eigenstates of a translated Hamiltonian

IJ' = H-V'p, (57)

where v is the nuclear velocity.

Direct calculation of every eigenvector is not practical for uiitinuum amplitudes,

so we use another technique, that of th»" C^iissian filter i i - 1 - ) . Suppose we expand

4>(T) = fdEj2Ax(E)^x(E) , (58)
J A

where A distinguishes substates of the same energy. The amplitudes can be picked

out of (58) by operating on i/> with the filter

\(E-Hy]
2A 2 J '

Defining 0 = F(E,A)tl>(T), it is easily shown that for moderately small A

(59)

(60)
A

With some refinements, it is possible to extract other information, such as angular

distributions.

In more recent work "', we do not use the Gaussian (59) as such, but replace

the exponential by a rational function

7 M

where the inversion is performed by damped relaxation.



2.4 The Dirac Equatio--

Discrete representations of the Dirac equation are plagued by the pathoiogy of

•'iermion doubling", namely the appearance of high momentum components at

low energies. We briefly indicate how this problem is avoided in the basis spline-

collocation method '.

It is sufficient to consider the continuum states of a free particle in one dimension.

The upper and lower components </, / satisfy

g - f' = Eg

f + g'=Ef. (61)

The pathology arises when (61) is discretized on a uniform mesh with the prescrip-

tion

' ( 6 2 )

manifesting itself in a double valued dispersion relation, as illustrated in Fig. 6.

If by contrast we use forward and backward differences

,, fn+l ~ /n , ^ gn ~ ffn-1 ,„„,
In~ Ax ' 9n - Ax ' l W )

a single valued relation is recovered.

In the basis spline-collocation method, we generalize this procedure by factoriz-

ing the second derivative representation

D ( 2 ) = D _ D + , (64)



w
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Fig. 6. Energy-momentum dispersion relation E(k) for a free particle obeying the
one dimensional Dirac equation. Reading from the top down, the curves refer to the
exact continuum result, discretization using (62), aad using (6o).

and replacing

D_g.

This procedure can be justified from fidelity arguments 4 ) . If D ( 2 ) satisfies an

identity of the form (30), then (64) is the only factorization leading to operators

which satisfy similar identities.
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