
«u3 nuaiMcript hu be
_ ^ _ authored by a contractor of the U.S.

^•- _ _ ^ j B ^ >-> ^-, Government under contract DB-
^ *""*"* " ., i —-_ S?#/ |>S fV X ^S AC0S-MOIU1400. Accordingly, the U.S.

/ AlJ r "" O ' J C ^ " U t y */j Gorernmcnt retain* a nonexclusive,
L l/J^ ' royalty-free license to pitblirii nr reproduce

the published form of thw contribution, or
allow othen to do io, for U.S. Government

LINEAR IDEAL MHD STABILITY CALCULATIONS FOR ITER
CONF-880363—3

1. INTRODUCTION
DE88 0 1 1 0 1 2

A su*vey of MHD stability limits has been made to address issues arising from the

MHD - poloidal field design task of the US ITER project. This is a summary report on

the results obtained to date.

As described at the November. 1987 ITER meeting, the objective of the ITER study

i- to 'develop and maintain baseline design(s) at a system codes level'. It is not intended

to produce a 'new, fully engineered U.S. machine*. Thus, a primary goal of the work is to

provide scaling information for the systems codes regarding the possible MHD constraints

on the ITER operating space.

The study described here evaluates the dependence of ballooning, Mercier and iow-n

ideal linear MHD stability on key system parameters to estimate overall MHD constraints

for ITER.

The calculations have been carried out with a version of the PEST 2.4 stability code

[lj and the PEST ballooning package, supplied to ORNL by Dr. J. Manickam of PPPL.

The ITER operating space limitations must be expressed as functions of the available

geometric parameters free to be chosen by the designer : aspect ratio, elongation, trian-

gularity, and indentation. In addition, the plasma parameters related to the rotational

transform ( central and edge q, local shear ) and pressure profiles ( peak and average

values) must be varied. Given values for these variables, the instability mode number and

effective external wall position must be specified as well. Adopting, for simplicity, zero

indentation, there are 10 significant parameters. A relatively coarse survey, with 3 values

for each, would require •*- 60,000 cases, and a more refined study, with 5 points per variable

would need — 10". Even these figures refer to an overly simplified representation of thje,

MHD stability problem since, for example, we use 5 parameters lo represent the q prowfetjj..

in the present study. ' ***" * ••''•*:
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These considerations suggest very strongly that data acquisition be well organised, and

that a sharply restricted number of issues be examined.

The equilibrium and stability results have been collated in a database system, in order

to examine the systematics of scaling. The database combines the commercial 1032 system

(2] for data archiving and manipulation with the PPPL LOCUS software [3] for plotting

and fitting. Equilibrium and stability calculations are performed on the US NMFECC

Cray machines, while database storage and activity is restricted at present to the ORNL

Fuiion Energy Division VAX cluster. Use of this ORNL stability database by the ITER

study group at Garching has been proposed.

The ITER issues addressed in this report are :

1. Is there an optimum elongation for fixed triangularity at the present US ITER engi-

neering limit {6 = 0.4)?

2. Is there an optimum triangularity for nominal fixed elongation K — 2 - 2.5?

3. How severe are restrictions on the operating space arising from non-optimal q values

('ravines' 14,5))?

4. What is the magnitude of the effect of the external wall on the accessible operating

space ?

5. What is the effect of larger aspect ratio on beta limits?

6. Are there restrictions on the operating space due to use of typical current drive profiles?

7. What modifications arise from the use of self-consistent transport profiles?

3. What is the nature of the modes which define the iimiting boundaries of the operating

space.

9. What is the functional dependence of the Troyon parameter CT{K.S, A, q.p), and is

there an optimal choice of variables for systems code analysis ?

The report is arranged as follows: section 2 elaborates on the specific questions covered

in the report, section 3 describes the equilibrium data used for the stability study, section

4 gives more detail on the parameters used in the stability calulation. Section 5 presents



the stability results and section 6 is devoted to discussion of the results and of directions

for further studv.
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2. ISSUES

The MHD stability issues posed for study by the MHD- Poloidal field design task force

are elaborated in this section.

2.1 Optimum elongation

The strong dependence of ITER cost on elongation has been stressed by Perkins [6].

From the overall economics aspect, ( Figure in [6|), there appears to be a window for

elongation , 2.0 < « < 2.4, within which K should lie. (The assumptions used to obtain

this result were that the triangularity was increased along with the elongation. As K varied

from 1 —• 3, S rose from 0 —» 1.)

Thus, given triangularity constrained for ITER-3 to a putative engineering limit (6 =

0.4), is there an optimum elongation for stability, or does f3crU increase without limit?

Systems code analyses tend to seek the maximum possible K if not so constrained.

2.2 Optimum triangularity

ITER work at the ORNL Fusion Energy Design Center motivated study of the question

whether, given a nominal value for K, there is an optimal triangularity. This could cause a

revision of the engineering limit imposed in the first study. The systems code impact here

is similar to that motivating the first issue.

2.3 Structure of the operating space

MHD stability studies are complicated by the fact that the stable operating space has

a complex structure. Unstable operating points in the midst of an otherwise stable zone

('Ravines') have been observed by several groups :4.5l as qw is varied. In addition, there is

sensitivity to details of the profiles: intermediate-n 'infernal' modes can be expected with

low shear profiles, and disappear with the addition of moderate shear. Hence, a detailed

study varying the q profiles is required to assess the robustness of the dependences

and 0Crit{S).



2.4 External wall effects

For the studies described above, it is assumed that the wall is at oo, both to be

conservative and because the 'effective wall' location cannot be specified until a detailed

poloidal coil design is chosen. However, stability of the external kink mode is very sensitive

to the existence and presumed location of an external wail, so some estimate of the wall

effect must be made.

2.5 Aspect ratio scaling

The ITER preliminary design evolved from the original TIBER-II design [7], and a

more ambitious radial build was proposed, resulting in a lower sspect ratio for the device.

As MHD stability generally improves at lower aspect ratio ;8j. a study similar to that

described in section 2.1 has been carried out at the TIBER-II aspect ratio, A=3.6, with

the same constraints on the shape, in order to document aspect ratio effects for possible

future evolution of the design.

2.6 Current drive effects on stability

The important role of driven currents in ITER implies that we study the sensitivity of

MHD stability to the current profile shape. Some flexibility is afforded by the freedom to

use any of a number of current drive schemes (lower hybrid and neutral beams, for example)

in producing optimal profiles. However, some schemes are more effective in producing edge

localised profiles (with smaller I* values), and the effect of varying current density profiles

on the operating space has been addressed.

2.7 Transport profiles

Optimal profiles for stability have been used in the preceding studies, to estimate

the operating space constraints. These profiles are not necessarily similar to those which

are optimal for neutron production, or those which are extrapolated from exisitng high-3

experiments. Peaking the pressure profile will enhance the fusion output, and so an as-

sessement of the impact of this peaking on the stability characteristics has been performed.



2.8 Mode analysis

While calculation of fitting formulae from the broadest possible database is the primary

goal of the study, it is important to have as detailed as possible an understanding of the

physical modes which actually limit performance. This level of analysis is more difficult

to provide on a bulk basis, since it requires, e.g., the grid convergence studies concomitant

with use of Pest 1. A sub-set of the database has been examined to establish the nature

of the modes which determine the operating boundary.

2.9 Systems code interface

The major purpose of this MHD study is to provide a detailed description of the

structured operating space in a form useful for systems code analysis. This application

requires the extraction of limiting curves from the database, and the formulation of Bis to

these curves to describe the dependence Cr(«, S, A,q,p).

In translating the results of the MHD survey into a form useful for systems code

analysis, appropriate variables must be chosen. In particular, Peng and Strickler [91 have

proposed the use of q as a reliable indicator of the rotational transform for highly elongated

and/or diverted configurations.

An assessment has been made of the relative properties of q and q* as indicators of ideal

stability, where

The systems code requires a scaling description of the dependence of the stability

boundary on the important parameters, we have this found least-squares fits to the t3max

values obtained by the survey for systems code use.



3. EQUILIBRIUM PARAMETERS

The equilibrium is computed with the DeLucia, Jardin, Todd [10) flux-coordinates

equilibrium code. The PEST mapper codes are used to produce input files for the stability

codes and the EQDSK and mapper files are stored at the US NMFECC for later use.

(Appendix 1 describes details of the database system.)

3.1 Equilibrium parameter ranges

For all the results presented the system parameters lie in the following ranges:

- Aspect ratio, A = 2.9 or 3.6

- Elongation, K , varies between 1.5 and 3.2

- Triangularity, 6 . varies between 0. and 1.0 .

• Fixed boundary safety factor q^ varies between 2.3 and 4.5

- Central safety factor q(0) is varied between 1.05 and 1.4

- < 0 > is scanned continuously between 0 and 30 %.

3.2 Profiles

We have adopted model analytic tokamak profiles for the cases studied, requiring

9(0) > 1, and 2.5 < ?«*,« < 4.5. These profiles are adapted from optimal cases at other

aspect ratios previously studied. A=1.67 (10j, A=2.5 [11].

This choice of profiles is indicated by the fact that more detailed forms are unlikely

to be better known for some time. Current drive will strongly influence q profiles and a

heating will modify both pressure profiles and the stability criteria themselves.

A recurrent topic in ideal MHD analysis is the choice of a value for q(0). We seek

to establish the limits of the ITER operating space, and thus wish to examine large scale

modes likely to be accurately described by the MHD approximation, and unlikely to be non-

linearly stabilised. In this regard, ideal MHD modes for profiles with q(0) < 1 have recently

been proposed as a possible mechanism for triggering the internal sawtooth oscillation.il2i

As sawtooth modes per se do not limit the operating space of tokamaks, although they

have an important effect on confinement, we will impose the constraint q(0) > 1 .



The approach described here complements that of other groups:

- Special 'Ohmic' current density profiles have been examined for CIT [13j

- A few configurations ( A=3.6. K = 2,5 = .25,0.4) have been studied for NET,[14], for

which the current density profile is optimised according to the Lausanne procedure for

the zero-.J external kink.

- The role of edge current density, with

has been examined for a limited number of configurations (A =4, «=1.6, 6=.3, with

possible up-down asymmetry), by the Keldysh group [5j.

The p and q profiles we have used are of the general form:

q =q(0) +

p(0) has been varied to scan < /? > •

q,4t* has been varied between 2.3 and 4.5, and calculations have been done for q(0)

between 1.05 and 1.4.

The choice q2=0 for the q profile produces a broad central low shear region, which is

susceptible to Mercier and 'infernal* modes. To avoid these modes, profiles with with q2

= 0.5 and a^ = 2 have been used for the majority of cases..

To obtain high shear in the region with large pressure gradients, the we chose ax = 6.

Figure la shows the range of q profiles used for the study, and Figure lb depicts the

(normalised) pressure profiles.

Figure 2 shows a typical current density profile which results from using these p and q

profiles. Note that there is a nonzero edge current density, resulting from the fact that the

q-profile is chosen rather than j , * . Typically, the the ratio of edge to peak j<$ ranges from 10-

30 % in the cases studied. The i3crit estimates are thus expected to be conservative, since

external modes due to this notwero edge current density could, in principle, be optimised

further. Note, however, that feedback stabilisation of highly elongated configurations will



continuously generate edge currents in the actual device, so these current density pedestals

are not unrealistic.

3.3 Configurations

The equilibrium calculations all assume a fixed external boundary. The shape param-

eters are defined by the equations for the outermost flux surface:

A' =A'o — e • cos(9 + SsinO)

Z =K • e

The elongation (*) and triangularity (S) values quoted are those used in these equations,

and the aspect ratio A = 1/e.

3.4 Scope of the equilibrium database

An overall view of the equilibrium characteristics of the ITER cases in the database

is shown in Figure [3], for which the 0^ vs I, 'operating space1 is depicted. The use of a

variety of profiles in the calculations approximately simulates the conditions under which

experimental /?-limit data is assembled from a series of experiments employing varying

techniques for fuelling and current programming. Figure [4] depicts the extent of the

coverage in < (3 > -K space, equilibrium calculations well in excess of the expected 0

limit are required to establish the kink limits for modes with n > 1, to aid in the unstable

mode diagnosis by examining cases with the conducting shell on the plasma, and to serve

as input data for future kinetic analysis which includes the effects of a particle populations.
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4. STABILITY CALCULATIONS

4.1 Codes used, mode and wall parameters

The PEST code system has been used to evaluate stability. For the great majority of

cases we have used Pest 2.4, which eliminates the sound continuum by solving an artificial

minimisation problem for marginal stability. Pest 1 is used in a relatively small number of

cases to compute the mode eigenfunctions to establish the characteristics of the limiting

boundaries in the operating space.

The stability study examines both low-n and localised modes. For the cases in this

report the stability of the n=l and 2 kinks has been tested, along with the ideal ballooning

and Merrier criteria.

For the majority of cases discussed we have assumed that the conducting wall is located

at an infinite distance from the last flux surface. However, as part of the wall effects issue

discussed in Section 2.4, we have also examined cases with a perfectly conducting shell on

the pluma boundary and at b /a = 1.5 ( b is the shell radius, a is the plasma radius, and

the shell is assumed to be conforxnal with the plasma shape).

4.2 Overall stability results

Before discussing the stability results in detail, the overall aspects of the stability

operating boundary deserve comment.

.„,„ Experimental results are often compared with the Troyon-Gruber parameter, proposed

to bound the maximum attainable 3 due to ideal modes:

CT =< d > i =
an

In general, when this parameter is compared with measurements, there is a trend apparent,

as illustrated in Figure [51, from [15]. The Doublet III operating space for 1.4 < « < 1.6 ,

and 2.3 < qt^ge < 2.6 is bounded for low lt by a disruptive limit unrelated to < 3 >, while

for higher £, a pressure limit is seen. The conclusion drawn by the Doublet III group is

that broad current density profiles are required for high 3. since the highest values of the

Cr parameter occur for the lowest values of c, consistent with the hard disruption iimit.

11



Comparing the results in a similar fashion from the ITER database as a whole, we find

a similar pattern. Figure [6a] shows the sparr surveyed for K = 2., and 3.1 < qt<ig* < 4.1.

Figure [6bj shows that there is a low-n limit in Cr - lt space, while Figure [6 c) shows a

ballooning limit. The overall trend is similar to that of the reported Doublet III operating

space.

The validity of the Cx parameter as a guide to stability is illustrated in Figures [7a,bj.

In Figure [7a], all the ITER cases in the ORNL database are shown in the Cj vs I plot.

(Current is normalised). In Figure [7b| only the n=l stable cases are shown for the same

space. We see that Cx = constant gives a reasonably good description, but that there is

some degradation at high current. Further discussion of this point is deferred until the

next section.

12



5. RESULTS

5.1 Optimal elongation

To establish the dependence of stability on elongation for these profiles, we examine

separately the cases £=0.4 and 6 = 0.2.

In addition, we take aspect ratio A=2.9 and qv. = 3.1. Results for q(0) = 1.05, 1.2 and

1.4 are included. (More detailed analysis of the dependence on q is presented in section

5.3).

5.1.1 Case with 6- 0.4

The results of the study of optimal elongation for 6 = 0.4 are shown in Figure [8a-e|.

Figure [8a] shows the dependence of the ballooning limit on K. A mono tonic increase in

0cr%t is found as K increases. This dependence /?crit(«) is sensitive to details of the pressure

profile. The solid curve in Figure [8a] shows the limiting case for which the pressure profile

parameter pi in equation (2.1) equals 2. The dotted line in Figure [8a] shows the limiting

curve for the case when pi=0. For the narrower pressure profile, there is an increase in 0

for K < 2.5, followed by a decline for larger values.

Figure [8b] shows the K dependence of the n=l limit. The ballooning limit is dominant

for *c < 2, and there is a strong decline in 0cru for K > 2.5 as was seen for ballooning

stability with pl=0. The n=l mode is not stongly affected by the pressure gradient, and

cases with pi =2 and pi =0 produce similar scaling. This result coincides with that found

by the Lausanne group [13]. who have shown that n=l stability is most strongly influenced

i, and not by the local pressure gradient.

Figure [8cj shows the maximum stable values in the database as a function of K. for

both ballooning and n—1 stability, for 6 = 0.4.

For the profiles chosen, the n> l limit in general lies above the n = l limit. Figure [8d]

shows the dependence of n=2 stability on K. 3crzt is slightly increasing for K > 2.5.

Figure ;8ej shows the dependence of the Troyon-Gruber parameter on K for low and

high-n modes. CT slightly increases for K < 2.5. and declines for larger values.
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5.1.2 Case with 6 = 0.2

Similarly, results have been obtained for the case 6 = 0.2. These are shown in Figure

[9a-bj. Figure [9a] shows the dependence < 0{K) >m«* for ballooning modes and n=l

modes for the 6 = 0.2 case, along with the comparable results discussed previously for

6 — 0.4. Figure [9b} shows the same comparison for CT as a function of «.

We see that increasing the triangularity from 0.2 to 0.4 increases < 0 > m « by 30 % ,

while the optimal K is - 2.5 . However, the dependence of optimal CT varies with S. For

6 - 0.4, the highest stable value of CT is reached for K = 2. — 2.8, while K0*1 is 2.2 for

* = 0.2

5.1.3 Trend

The picture which emerges from these results is that there is a peak in stability for

K — 2. — 2.5, followed by a decline for higher elongations.

It should be noted that axisymmetric modes will also be important for such configu-

rations, and that ITER studies of n=0 modes are underway.

5.2 Optimal triangularity

To study the dependence of {3erxt and C T on 8 we consider scaling with fixed elongation

for two cases : « = 2.0 and 2.5 . The other parameters are as chosen in section 5.1 .

5.2.1 Case with « = 2.0

Figure [lOaj shows the dependence of/3max on 6 for n=l and ballooning for K = 2.0. As

expected the ballooning stability is most sensitive to triangularity, while the n=l boundary

is improved with the increase in total current. For larger triangularity , the n=l limits

grow slowly with 6.

Figure [lObj shows the n=l and ballooning dependence C™as(6) at K = 2.0 . As

expected from the steady rise oi ^Crit with 8. the Troyon parameter is relatively constant.

This is a favorable result, in that there is no deterioration of MHD stability with increase

in S, although the current is increasing. Thus, since confinement and density limits rise

with I, an overall improvement in performance can be expected.
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5.2.1 Case with K = 2.5

Figure [11 a] shows the dependence of 3ma* on 6 for n=l and ballooning for « = 2.5.

0crit rises with S for 8 S 0.5, then saturates and declines.

Figure [llbj shows the n=l and ballooning dependence Cj"{8) at K — 2.5 The Troyon

constant has a peak at 8 = 0.5. This result implies that there is a deterioration in the

benefits of triangularity at higher elongation.

5.2.3 Trend

Since there is overall growth in 0maz and relative constancy of C™** with increase in

6, further improvement can be expected in the ITER-3 design 3 limit if the triangularity

were to be increased from 0.4 .

5.3 Dependence on q : 'Ravines'

The trends observed for the maximum values of 0 and CT in the database will depend

on the assumed values of the safety factor. Thus, calculations have been made to assess

the sensitivity to q(0) and qtd§«- The parameters varied in this study are:

A = 2.9

S = 0.2 , 0.4

K = 1.6 — 3.2

q(0) = 1.05 , 1.2 , 1.4

= 3.1 , 3.6 , 4.1 .„„ ^

5.3.1 Variation with

The variation of ballooning and n=l limits is discussed separately for 8 = 0.2 and 0.4

5.3.1.1 q(rff* variation for 6 — 0.4

We first consider the nominal ITER reference case with 8 = 0.4 .

The sensitivity of the < 3 > limit to qedg« is shown in Figures j 12a-c: for ballooning

and in Figures I3a-c: for the n = l mode. The -" 3 > («) dependence is shown separately
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for q(0) = 1.05. 1.2, and 1.4 in Figures [12a-cl for ballooning and in Figures [13a-cj for

n=l .

For K < 2.5, the ballooning limits decrease as qedge is increased from 3.1 to 4.1, recalling

the simple analytic scaling 3erU - e;q2.

For higher K. there is a more complex structure, and saturation and decline is observed

for q(0) = 1.2

The n=l stability limits show the effect of 'ravines' found earlier by the Keldysh and

Lausanne groups. The low-n limits are the most stringent for K > 2.5, and thus set the

overall limit.

5.3.1.2 q«4f« variation for S = 0.2

The next series of results examines the stability limit variation with qtdgt for S — 0.2

.The < 0(K) > curves for qtdge = 3.1, 3.6, and 4.1 are shown.

For 6 = 0.2, the ballooning limits show relatively little variation with qedge, as seen in

Figures [14a-c] for q(0) = 1.05, 1.2, and 1.4, respectively. In each case there is an optimal

K at ~ 2.5, and a slight decrease in 0mmx as qtdtt is increased from 3.1 to 4.1 .

The n=l limits behave similarly to the 6 - 0.4 case (Figures 15 a,Lj). There is a

moderate 'ravine' for the q.dfe = 3.6 case, as at the higher triangularity, and, again, the

n=l mode sets the upper limit for K > 2.5 .

5.3.2 Variation with q(O)

Just as in the case with qtdge variation, varying q(0) with fixed qedge can be expected

to show structure . As in Section 5.3.1, we discuss the cases S •=• 0.2 and 0.4 separately.

5.3.2.1 Case with 8 = 0.4

Beginning with the nominal ITER reference case. 6 = 0.4 , the ballooning limits <

${K) > are shown in Figures ' I6a-ci for qedge — 3.1. 3.6 and -i.l. respectively, while the

Q=1 limits are shown in Figures 17a-ci.



The ballooning limits show a generally increasing behavior as a function of K, with

slight variation as a function of q(0). There is some structure for K > 2.5, for q(0) = 1.2,

but overall there is a slight decrease in 3crxt with increasing q(0).

The n=l limits again show the 'ravine' structure associated with resonances. As seen

in Figure [17bj, there is again a pronounced dip in 3erit for qe(<,e = 3.6, both for q(0)=

1.05 and q(0) = 1.2 . For cases away from resonance, there is a maximum K at 2.5, and

constant or declining 3 for « > 2.5 .

5.3.2.2 Case with S = 0.2

For the case, S = 0.2 , the ballooning limits < /?(«) > are shown in Figures [18a-c] for

— 3.1, 3.6 and 4.1. respectively, while the n=l limits are shown in Figures [19a-c]

The ballooning limits are similar to those seen with 8 — 0.4, except that the peak K is

slightly smaller, 2.3 as compared with 2.5 for higher triangularity.

The n=l limits at h — 0.2 also show a less pronounced 'ravine' structure for q«rffC =

3.6. As seen in Figure [ 19b], there is a dip in /?erit for q,*,, = 3.6, both for q(0)= 1.05 and

q(0) = 1.2 . For cues away from resonance, there is a maximum « at 2.3, and constant or

declining 3 for K > 2.3.

5.3.3 Trends

The complex structure of the operating space is made evident by the separate studies

of the dependence < ,3(K) > with q(0) and qedge varied independently. It is important to

note that scaling of 3cnt with K can vary strongly depending on the value of qedge-

5.4 Wall effects

The preceding results all assumed a conducting wall at oo. The effect of wall stabil-

isation on the external kink modes is well known. However, without a detailed poloidal

coil design it is not possible to make a precise estimate of the effective wall radius, except

to say that the oc wall results are pessimistic. To estimate the size of the effect we have

re-studied the < 3(K) > dependence for qedge = 3.1. and q(0) = 1.05, 1.2 and 1.4, for

6 = 0.4. The wall positions chosen for comparison were b , a = 0. 1.5, and oc .

17



Results are shown for < /?mar(«) > and Cro s(«) in Figures :20-22a,b]. Figures [20-22a|

show the j3 dependence, while Figures [20-22b] show the Cr scaling.

For each value of q(0) , the b 'a = 0. and 1.5 cases have nearly the same behavior, and

the b/a = oc case is pessimistic by a factor 2-3 for K > 2.5 . Only for q(0) = 1.4 is there

an appreciable diminution of /3crjt for the case b/a = 1.5 . The Cr variation ( Figures

(20-22bj) is relatively flat with K, except for the case with wall at cc .

5.5 Aspect ratio scaling

To document the possible consequences of adopting a higher aspect ratio in the ITER

design, calculations made for the earlier TIBER-II design, with A =3.6, are discussed. The

parameters for this study are :

A = 3.6

q<rffe = 3.1 - 4.5

q(0) = 1.05

K - 1.5 — 3.

S = 0.2 — 0.6

As seen from Figure [23j, the dependence/3mar(«) is similar to that at A = 2.9, however,

the optimal K lies somewhat lower, o.t « - 2.3 . The absolute values of /3erit are also lower

at the higher aspect ratio, with £ m s * - 8%. Thus, adopting a higher aspect ratio would

bring a ~~ 50% penalty in (3Cnt-

5.6 Current drive implications

The sensitivity of 0 limits to the current density profile is well known. Various schemes

for current drive are being considered for the ITER design, with lower hybrid, bootstrap

and neutral beam drive among them. These approaches are somewhat complementary , in

that beam current drive could provide current density peaking, while LH and bootstrap

currents can provide edge current density. Thus, all could be used to tailor MHD-stable

profiles.

Figures [24a.bl show the dependence of stable cases in 3poi vs £, space, for ballooning

and n=l modes, respectively. As can be seen . the stability criteria favor high 3pat at high
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ti. This may conflict with current drive requirements. For example, calculations of the

dynamics of bootstrap current formation [Ifil shmv that the proport.ionnli«v hrtwren jgs

and 0pot leads to production of a hollow current density profile ( low ti) at high 0poi- This

trend is opposite to that suggested by Figures !24a.bj.

5.7 Transport self-consistency

Considerations of optimisation of neutron production lead to a need for centrally

peaked pressure profiles [17]. These high-reactivity profiles enhance the fusion output

for a given energy confinement time rg.

The impact of such profiles on ideal MHD stability is significant, though. The Table

shows the results of a scan with the pressure profile parameter a of Section 3.2 taken to be

2.2 to coincide with confinement performance calculations. For this study K — 2., 6 =0.4.

q(0) = 1.05, qe*,« = 3.1. For profiles which limit the 0 operating space, < 0 ^Uooning^

7.5 %, and < 0 >n=1-~ 10.5 %. we see that the ballooning limit is reduced by a factor

3.5, and the low n limit by ~- 3 . It important to note that optimisation of this result is

possible. Nevertheless, the reduction in C? is substantial.
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Table : Stability with peaked profiles

Beta Cr Baloon stable Mode Inf. Wall stable b/a=l.5 stable

0.00 0.00 1
2

0.68 0.24 1

2

1.37 0.49 1
2

2.07 0.73 No 1
2

2.76 0.97 No 1

2

3.46 1.22 No 1 No No

2

4.16 1.46 No 1 No No
2

4.87 1.70 No 1 No No

2 No No

Note: Cases are stable unless noted

5.8 Mode identification

To decide whether the operating space boundaries represent substantial physical limits,

rather than artifacts of the particular profiles chosen for study, it is necessary to compute

the radial eigenfunctions for the cases lying on the stable-unstable boundary. From the

large number of such operating space boundaries presented in the preceding sections, we

choose to examine the bounding curve in < 3 > — K space discussed in 4.2.1. This study

varied K with 8 fixed at 0.40. and with q(0)=1.05. qeif?e=3.1

Figure [Saj reproduces the stable-unstable boundary, and three cases lying on the

boundary are selected for further analysis. The parameters for these cases are:
20



(%)

12.5

8.9

3.5

K

2.4

2.8

3.0

Equilibrium ID

ITR32

ITR54

ITR45

Figure [25a-c] shows the flux surface averaged toroidal current density as a function

of effective radius for these three cases , and Figure [26a-ci shows the computed PEST 1

eigenfunctions for each.

The unstable mode structure for each of the cases is heavily dominated by external

modes, with a large internal m=2 component. Thus, it is likely that there will be a strong

effect from an external stabilising shell. It also appears that finite Larmor radius effects

would not radically alter the stability picture for 5uch a large-scale mode.

Analysis of these cases re-confirms the effect discussed earlier in Section 5.4. . Each

case is found to be stable both with the w*ll located on the plasma surface and for b / a

= 1.5 . Thus, the operating space boundary will be strongly influenced by wall effects.

5.9 Systems code interface

In order to describe the MHD limits in a form suitable for interface with the other

constraints examined in tokamak reactor design ( confinement scaling laws, poloidal field

design criteria, etc.) we must express the results in the form of scaling fits . This task is

greatly facilitated by the LOCUS database software developed at PPPL [5|.

Before presenting the scaling fits, though, we discuss the appropriate variables to use

in the fitting.

5.9.1 q compared with q*.

The safety factor variable is sensitive to configuration for highly elongated and diverted

plasmas. As has been discussed by Peng and Strickler [11], even highly elongated plasmas

without an internai separatrix are influenced by the nearby separatrix in the vacuum field.

Thus, artificially high values of safety factor may be computed in using such approximate

formulae as that commonly used :
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Figure [27a] shows the dependence of Cr on q' for ITER-3 cases with 1.6 < K < 3.2

and S = 0.4 . The stable and unstable cases for n = l modes , with the wall at oo, are

distinguished.

When described in terms of q", the cases ( all of which have qMHD > 3), have q-values

< 2. Furthermore, there is a relatively indistinct unstable boundary.

Figure [27b] shows the same cases, plotted as Cr(?). The q values all lie above 2, and

there is an obvious low-q limit due to large scale MHD modes.

Thus, q appears to represent a more natural choice for describing the scaling .

5.9.2 Scaling formulae

Figure [28a] shows the overall dependence < j3 > (q) and Figure [28b] shows the Cr(q)

curve. There is a resonance structure visible, but the over-all scaling formulae are taken

to average this detailed dependence away , yielding :

CT = (-0.136019 ± 0.116)9 - (2.86427 ± 0.336)

More detailed fits to the individual cases discussed in sections 5.1 - 5.7 are given in

Appendix 2.
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6. CONCLUSIONS AND FURTHER WORK

The following conclusions emerge from the studies to date:

1. At the ITER-3 aspect ratio, the calculations support choosing elongation greater than

2. Optima lie in the range 2.2 < n < 2.6.

2. Triangularity is generally beneficial, and the calculations support an increase in the

present upper limit {6 — 0.4).

3. There are two countervailing effects not included in the bulk of the calculations :

a. Non-optimal profiles, typical equilibria generated by transport codes

b. Effect of an external conducting wall

The first effect will reduce the expected &, while the second will increase it. Present

indications are that the transport-related reduction is greater than the wall stabil-

isation.

4. The operating space is structured, and local unstable regions appear in the midst of

generally stable zones. This phenomenon is correlated with resonant values of the

safety factor. Scaling fits used in systems code analysis should account for this effect.

5. For the profiles chosen, current density profiles tending toward those typical of edge

current drive schemes appear to reduce the 3Cr%t- This tendency should be factored

into the analysis of such scenarios.

6. The modes which limit the operating space are of a large-scale nature, and are thus

appropriate predictions of a fluid-like theory.

7. A limited examination of aspect ratio scaling suggests that operation at a larger aspect

ratio would reduce 0crit-

Further work is needed in a number of areas:

- we need to examine transport-relevant profiles more systematically, and to calculate

the results using profiles from present 3-limit experiments.

- an estimate of the magnitude of kinetic effects (especially a pressure) is needed.

- the changes introduced by nonlinear and resistive effects have to be studied



It is expected that evolution of the ITER design will occur, and we have constructed

a flexible system for evaluating the consequences for MHD stability of such inevitable

changes.
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FIGURE CAPTIONS

Figure l a q profiles used in ITER study as a function of poloidal flux.

Figure l b Normalised pressure profiles used in ITER study, as a function of poloidal flux.

Figure 2 Typical j$ profile, with - 10 % edge current density pedestal, as a function of v 1 / 2

Figure 3 ITER 0poi«id»i v» U operating space surveyed for MHD stability.

Figure 4 ITER < 0 > - K space surveyed for stability.

Figure 5. Operating space for the Doublet III tokamak, as a function of the Troyon-Gruber

parameter Cr *nd the internal inductance. Ct, for 1.4 < K < 1.8. and 2.3 < qedge <

2.8.

Figure 6a Cases surveyed for ITER, in Cr - U space, for K = 2. , and 3.1 < qed3e < 4.1.

Figure 8b Cases in Figure 6a with n=l instability.

Figure 6c Cases in Figure 6b with ballooning instability.

Figure 7a Overall view of the dependence of Cr on current for the database.

Figure 7b Stable cases in the database.

Figure 8a Dependence of ballooning < 3ent > on /c for q(0) = 1.05 and qed9t = 3.1 , 5=0.4, and

for pressure profile parameter pi =0. and 2.

Figure 8b Dependence of n=l limit < /5crtl > on K with 6=0A. for q(Ql = 1.05 and qectge = 3.1

Figure 8c Combined n=l and ballooning limits for 6=0A.

Figure 8d n=2 stability limit for the conditions of Figures 8a-c.

Figure 8e Cr vs K for the conditions of Figures 8a-d.

Figure 9a Ballooning limit for q(0)=1.05. qedgf=3.i. 8 = 0.2.

Figure 9b n=l stability limit for conditions of Figure 9a.



Figure 10a Dependence of < 0crit > on triangularity for K = 2 .

Figure 10b Dependence of Cr on triangularity for «=2.

Figure l l a Dependence of < 0erit > on triangularity fur K=25.

Figure l i b Dependence of Cr on triangularity for «=2.o

Figure 12a Ballooning stability : < 0 > vs K for S=0A. q(0)=1.05. The 3 cases shown are

= 3.1, open circles, 3.6, black circles, and 4.1. triangles.

Figure 12b Same as Figure 12a for q(0)=1.2

Figure 12c Same as Figure 12a for q(0)-1.4

Figure 13a n = l stability : < 0 > vs K for S=QA, q(0)=1.05. The 3 cases shown are : q^ , , = 3.1,

open circles, 3.6, black circles, and 4.1, triangles.

Figure 13b Same as Figure 13a for q(0)=1.2

Figure 13c Same as Figure 13a for q(0)=1.4

Figure 14a Ballooning stability : < 0 > vs ft for 6=0.2. q(0)=1.05. The 3 cases shown are : qtdge

= 3.1, open circles, 3.6, black circles, and 4.1, triangles.

Figure 14b Same as Figure 14a for q(0)=1.2

Figure 14c Same as Figure 14a for q(0)=1.4

Figure 15a n = l stability : < 3 > vs K for 5=0.2, q(0)=1.05. The 3 cases shown are : qe i ,e = 3 . 1 ,

open circles, 3.6, black circles, and 4.1, triangles.

Figure 15b Same as Figure 15a for q(0)=1.2

Figure 15c Same as Figure 15a for q(0)=1.4

Figure 16a Ballooning stability : < 3 > vs « for -5=0.4. open circles are q(0) = 1.05. dark circles

q(0)=1.2. q«*,e=3.1.

Figure 16b same as Figure 16a for qei^«=3.6
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Figure 16c Same as Figure 16a for qedje=4.1

Figure 17a n=l stability : < 0 > vs re for 6=0.4, open circles are q(0) = 1.05, dark circles q(0)=1.2.

Figure 17b Same as Figure 17a for qerfje=3.6

Figure 17c Same as Figure 17a for qerfje=4.1

Figure 18a Ballooning stability : < $ > vs « for 5=0.2, open circles are q(0) = 1.05, dark circles

q(0)=1.2. qerf,e=3.1.

Figure 18b Same as Figure 18a for q«d9e=3.6

Figure 18c Same as Figure 18a for q«<ije=4.1

Figure 19a Ballooning stability : < j3 > vs « for 6=0.2, open circles are q(0) = 1.05, dark circles

q(0)=1.2.

Figure 10b Same as Figure 19a for qejSc=3.6

Figure 19c Same as Figure 19a for

Figure 20a Dependence < /3 > on « for S = 0.4, qtdge — 3.1. The three curves are : open circles,

b / a = 0., cloned circles, b / a = 1.5, triangles , b / a = oo.

Figure 20b Dependence Cr on « for S - 0.4, qe<i9e =3 .1 . The three curves are : open circles, b /

a = 0., closed circles, b / a = 1.5, triangles , b / a = oc.

Figure 21a Dependence < (3 > on K for S = 0.4, qe<fge = 3.6 The three curves are : open circles, b

/ a = 0., closed circles, b / a = L.5, triangles , b / a = sc.

Figure 21b Dependence CT on K for 6 = 0.4, qettge = 3.6 The three curves are : open circles, b /

a = 0., closed circles, b / a = 1.5, triangles , b / a = oc.

Figure 22a Dependence < 3 > on « for S = Q.4, qedffe =4.1 The three curves are : open circles, b

/ a = 0.. closed circles, b / a = 1.5, triangles . b / a = 3C.
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Figure 22b Dependence C r on n for 8 = 0.4, qedje = 4.1 The three curves are : open circles, b /

a = 0., closed circles, b / a = 1.5, triangles , b / a = oc.

Figure 23 < $i vs K for 0.3 < S < 0.4 at A=3.6 . q(0) = 1.05, qtttge = 3.1.

Figure 24a Ballooning stability for K = 2., S = 0.4. in 0potot<£*i V$ U space for A=2.9

Figure 24b n= l stability for K = 2., S = 0.4, in 3p0io,4ai
 v ' U space for A=2.9

Figure 25a Toroidal surface-averaged current density as a function of minor radius for case ITR32.

Figure 25b Toroidal surface-averaged current density as a function of minor radius for case ITR54.

Figure 25c Toroidal surface-averaged current density as a function of minor radius for case ITR45.

Figure 26a PEST 1 eigenfunctton arrow plot for case ITR32.

Figure 26b PEST 1 eigenfunction arrow plot for case ITR54.

Figure 26c PEST 1 eigenfunction arrow plot for case ITR45.

Figure 27a C T VS q" for 1.6 < « < 3.2, and 6 = 0.4.

F igure 27b C T VS q for 1.6 < « < 3.2, and S = 0.4.
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1. Introduction

Dr. J. Manidcam of PPPL, in collaboration with J. A. Holmes of ORNL, has provided

a version of the PEST stability package for use at ORNL. The code was installed and made

operational by J. A. Holmes.

Since the ORNL applications of the PEST codes are typical of those at other fusion

laboratories, and since the benefits of a collaborative accumulation of the results of more-

or-less routine ideal stability calculations are an obvious way to improve the efficiency of our

work, this report is being circulated to describe the application of a database management

system to the collection and analysis of data from PEST runs.

It should be noted that some of the details of the system are specialized to the ORNL

version of PEST, but the approach is general enough to suggest a common format. If this

is perceived to be a desirable course of action, creation of a common database could be a

valuable contribution of the IPSG.

Both PEST 1.0 and PEST 2.4 are included in the code suite. The advantage of PEST

2.4 is that it eliminates the sound continuum, and solves for marginal stability. Hence, a

yes/no answer for stability can be obtained without a convergence scan for each cue, but

at the cost of losing a solution for the unstable mode structure. PEST 1 does provide a

description of unstable mode structures, but grid convergence studies are required. The

ORNL database is composed mostly of PEST 2 runs, hence little attention has been paid

to DBMS organisation for the accumulation and evaluation of convergence scans. This

application is well suited to DBMS capabilities, however, and can be included easily.

The application described in this report deals only with scalar data, because of the

limited access to output in the ORNL code versions. Eigenfunction (or <TW) arrays can

easily be incorporated in the system, if they are available from the code.

The constraints in the current implementation of PEST at ORNL are:

- Only CRAY-1 controllees are available at for the stability codes

- PEST scans generate large quantities of data, and only the equilibrium and mapper

output can be controlled by the user.



The system as constructed has four major components:

1. COSMOS job submission files for equilibrium and stability (VAX)

2. FILEM storage system for re-usable mapper, equilibrium, and kinetic energy matrix

files (LLNL)

3. A System 1032 DBMS structure for storing and retrieving equilibrium, high- and low-a

stability results. (VAX)

4. A FORTRAN interface with the PPPL Locus software for plotting the results. (VAX)

2. COSMOS control file system

The PEST task on the CRAY consists of condensing the voluminous PEST output

and constructing a small data base output file for CRAY — VAX transfer. This file has

ingredients from as many as 5 different codes. The component sections are:

HEADER - identifies the equilibrium case

EQUILIBRIUM DATA - from the input file and results

CURRENT DENSITY - the internal inductance

BALLOONING CODE - Merder and ballooning output

PEST 1.0 - Results of the PEST 1 calculation

PEST 2.4 - Results of the PEST 2 calculation

The batch job submission system (COSMOS) separates the PEST task into a prepara-

tory equilibrium and mapper phase, and a subsequent low-n stability evaluation phase.

The motivation for this separation is that there is a large parameter space required to be

surveyed. Thus, stored equilibrium and mapper files can be re-used to investigate stability

for new choices of toroidal mode number and for new boundary conditions.

2.a Equilibrium job submission

The COSMOS file COSMOS_BATCH_EQUIL generates a sequence of equilibrium,

ballooning and mapper runs and stores the results in FILEM. It contains all the input

data files required for an equilibrium 3urvey. The equilibrium run generates the header fiie

for the eventual database entry file, consisting of the pertinent parameters from the input

dataset. and the key equilibrium properties from the equilibrium solution.



2.b Stability job submission.

The COSMOS stability file COSMOS-BATCH-LOWN

- retrieves equilibrium files from FILEM

- generates internal kinetic energy files for FILEM storage, if not previously run for a

given mode,

- runs PEST 1.0 and/or PEST 2.4 for a specified sequence of mode numbers and wall

conditions.

The internal K.E. files generated during this step can be re-used (for the same mode)

for changes in wall conditions.

3. FILEM storage of map and equilibrium data base files

The equilibrium and mapper codes run as part of the PEST system generate disk files

which specify the profiles, metrics, etc., for the case chosen. They need only be calculated

once for each configuration, and are re-used as the mode number and wall boundary

conditions are varied.

In addition, the oo-n ballooning and Mercier calculations are attributes of the equilib-

rium, and the collected equilibrium properties and the results of Mercier and ballooning

analyses form the equilibrium dataset.

3.a Equilibrium ID

The mapper and dataset files are stored in FILEM areas identified by an equilibrium

ID (EQUILJD), which is subsequently used as the key index for the stability results.

In the ORNL implementation this ID has the structure:

A Rnmtn

where

AB is a two letter Data Set ID (e.g. ER to denote ETR)

n identifies a family of equilibria in this data set.

mm identifies the individual family member

3.b FILEM ED

The PEST files referring to an equilibrium sequence with equilibrium ID equal to ABn

are stored in FILEM area .ABn . The naming conventions are described in Table 1.



4. PEST / System 1032 Database Management System

The CRAY-generated data file is read by a FORTRAN program on the VAX, (PEST

.1032.FOR), where the data are converted into a 1032-readable record. This record is

added by PEST.1032.FOR to the relevant 1032 dataset and database, as directed by the

database output file header produced on the CRAY.

The 1032 DBMS database-dataset structure allows use of the 1032 commands for

selecting interesting data collections for examination. The software is designed to allow

complex search criteria to be specified, and to join related datasets (e.g. equilibrium, high-

n, and low-n) which meet these criteria. System 1032 macro instructions (PRINT) are

used to construct output files which are then read and manipulated by the LOCUS cods.

The steps in producing the data set are:

4.a CRAY data file generation for 1032 data base

4.a.l Data file header

The four code steps involved in a stability calculation (equilibrium, current density,

high-n and low-n stability) each contribute dal- to the data base data file. This file is

constructed by the COSMOS routine as the job proceeds. Thus, a header is constructed

before the equilibrium sequence is run, and contains the information shown in Table 2.

4.a.2 Equilibrium data added to data file

The equilibrium (golOOjh) and current density (goc^rryb) evaluation steps add the

basic equilibrium data to this header described in Table 3.

4.a.3 High-a data added to data file

The Merrier and ballooning stability analysis Cgobalyb) contribute additional data to

the accumulating data file. These data will be stored by 1032 in the dataset associated

with the EQUILJD value of the equilibrium. The data are described in Table 4.

4.a.4 Low-n stability

Finally, the data describing the low-n stability results are shown in Table 5.



4.b PEST - 1032 transfer

The CRAY generated data files are concatenated into a single file (F0RO2O.DAT). The

FORTRAN program PEST.1032.FOR reads and recordi the data. This program uses 1032

macro files BETA.DMC and BETDEL.DMC.

A listing of this FORTRAN routine is given in Appendix 1.

5. LOCUS interface

The data base structure of 1032 allows the selection of desired data combinations using

constraints on the data recorded. For example, one might typically select only cases with

toroidal mode number = 1, with central safety factor in the range 1.01 < q(Q) < 1.1,

1.5 < K < 2.j and so on. These selection criteria are then used to create simpler data files

for use with the PPPL LOCUS software for display. The 1032 PRINT command is used

to construct a data file P1032.DAT which is read by the LOCUS FORTRAN interface code

1032-LQCIJS.FQR to produce output database files readable by LOCUS.

The interface code 1032-LOCUS.FORreads the P1032.DAT file, and produces the .DBC

file required for LOCUS input. A listing of a typical variant is given in Appendix 2.

At the completion of this step, LOCUS is invoked to plot the results. Figures 1 and 2

show a sampls data base scatter plot for ETR calculations, both a total plot of < 0V > vs

internal inductance, and a refined plot showing only those cases which are both balooning

and low-n mode stable.

The value of the data base becomes readily apparent when translation from physical

quantities (e.g.. q^) to engineering approximations (e.g., q") is required.



Table 1

FILEM STORAGE

STEP

Equilibrium
PEST 2.4 mapper
PEST 2.4 mapper
PEST 1.0 mapper
PEST 1.0 mapper
PEST 2.4
PEST 1.0

PEST FILENAME

EQB1
MAPDSK
MPOUT1
MAPDSK
MAPOUT1
EQJIN, EQJOUT
EQJIN, EQJOUT

FILEM DESIGNATION
(All in Directory .ABumm)
qdskABnmm
dJc2ABnmzn
mp2ABnxnm
dklABnmm
mplABnmm
j2iABnmm,
jl'ABomm,

j2tABnmm
jltABnmm

Tab'.e 2

DATA BASE DATA FILE HEADER

EQUILJD
DATE

COMMENT
EQDSN
HNDSN
LNDSN

Equilibrium ID
Date (1032 format)
Month-day-year
comment
Data set name for equilibrium portion
Name for high-n portion
Name for low-n portion

IEQ IMOD FWAL Number of equilibrium, mode, and wall cases in data set

Table 3
DATA ADDED IN EQUILIBRIUM STEP

NTHE
NPSIE
ALPHA
BETA
ELLIPT
DEITY
QLIM2
QPOF2
PI
ALPHA2
BETA2
QO
QLIM
QPOF
XMAG
BETAEQ
BETAI
AREA
P3AR
CURRENT
POO
LI

Number of 8 points
Number of p points
Pressure profile parameter
Pressure profile parameter
Elongation
Triangularity
q profile parameter
q profile parameter
Pressure profile parameter
Pressure profile parameter
Pressure profile parameter
q profile parameter
q profile parameter
q profile parameter
Axis shift
Average 3
"ngineermg 3?oi
Cross section
P-pronle shape factor
Total current
AJDS 3
Internal inductance



Table 4

HIGH-N DATA

Quantity Description Comment

LAMBDA Ballooning growth rate (0. if stable)
KAPPAS Geodesic curvature contribution

to growth rate
KAPPAP Normal curvature contribution

to growth rate
ALPHAB line bending contribution

to growth rate
BALLOON.STABLE
MRCSTB.SURF5
MRCSTB.SURF15
MRCSTB.SURF25
MRCSTB.SURF35.
MRCSTB-SURF45
MRCSTB.SURF55
MRCSTB.SURF65
MERCIER.STABLE

Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical

Table 5
LOW-N DATA

Quantity Description Comment
Betapol Real
B Real
INFWAL Logical
SURF Logical
P -2.STABLE logical
P-1.STABLE logical
PJLHiquality Logical
P_L_Hiquality Logical

Poloidal beta
Plasma/ wall radius
Yes if at co
Yes is at surface
Yes if PEST.2 stable
Yes if PEST.1 stable
Yes if numerics OK
Yes if numerics OK

Overall Balooning Stability
Mercier stability for surface 5

15
25
35
45
55
65

Overall Mercier stability
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APPENDIX 2

SCALING FITS

The fits for cases discussed in Section 5 are presented here. The specific cases treated

are :

C ? " vs K for £=0.2 and 0.4

q0 = 1.05, 1.20, 1.40

q^ = 3.1, 3.6, 4.1

i lid least squares fits to the maximum values of C'T found in the database as a function

of re are given in the form :

CT = ao •+• <*i • « + o-2 • « 2

and the values for the coefHcients are given in the Table.

Table : Fitting coefficients

Figure

A.I
A.2

A.3

A.4

A.5

A.6
A.7

A.8
A.9

A.10

A.ll

A.12

A.13

A.14

A.15

6

0.4

0.4

0.4

0.2

3.1

3.6

4.1

3.1

3.6

q(0)

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.4

*o

-7.23857

10.9932

-1.02497

-7.11929

16.3424

-2.81784

4.20549

16.4382

-1.17857

-5.12268

3.76217

3.33175

-0.315717

11.4254

-2.40393

»i

9.7625

-7.7875

3.04349

9.78334

-12.7827

4.89125

-1.12196

-13.3110

3.25804

8.13185

-0.309416

-0.177207

3.70238

-7.62066

4.95046

-2.40179

1.54464

-0.662879

-2.50595

2.60417

-1.14123

-0.129466

2.68507

-0.825893

-2.12351

-0.21158

-0.16829

-1.22619

1.35465

-1.25027



The Figures showing these fits are given as A 1-15.



APPENDIX 2

SCALING FITS

The fits for cases discussed in Section 5 are presented here. The specific cases treated

are :

C y " vs K for £=0.2 and 0.4

q0 = 1.05, 1.20, 1.40

q* = 3.1, 3.6, 4.1

The least squares fits to the maximum values of Cr found in the database as a function

of K are given in the form :

and the values for the coefficients are given in the Table.

Table : Fitting coefficients

Figure

A.I

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.ll

A.12

A.13

A. 14

A. 15

6

0.4

0.4

0.4

0.2

q*

3.1

3.6

4.1

3.1

3.6

q(0)

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.40

1.05

1.20

1.4

ao

-7.23857

10.9932

-1.02497

-7.11929

16.3424

-2.81784

4.20549

16.4382

-1.17857

-5.12268

3.76217

3.33175

-0.315717

11.4254

-2.40393

32

ai

9.7625

-7.7875

3.04349

9.78334

-12.7827

4.89125

-1.12196

-13.3110

3.25804

8.13185

-0.309416

-0.177207

3.70238

-7.62066

4.95046

-2.40179

1.54464

-0.662879

-2.50595

2.60417

-1.14123

-0.129466

2.68507

-0.825893

-2.12351

-0.21158

-0.16829

-1.22619

1.35465

-1.25027



The Figures showing these fits are given as A 1-15.
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