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QMR METHODS IN COMPUTATIONAL FLUID
DYNAMICS*

N.-M NACHTIGAL AND B.-D SEMERARO

We examine the application of QMR methods to the solution of linear systems of equations
arising from the use of implicit solution methods in computational fluid dynamics. We will deal
with implicit finite difference schemes for solving the Euler equations. These schemes may- arise
from the implicit treatment of the time dependent equations or from the use of Newton’s method
for the solution of the steady state equations. In both situations it is necessary to solve a large
sparse nonsymmetric linear system of equations at each iteration. We will examine the effectiveness
of QMR in the solution of these systems. We compare the resuiting methods to methods which
rely on some other simplifying technique to solve the linear systems. Our goal is to show that the
QMR method is a viable alternative to the more ad-hoc schemes for solving implicit computational
fluid dynamics problems.
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1. INTRODUCTION

We wish to examine the use of the Quasi-Minimal Residual (QMR) method due to
Freund and Nachtigal* for the solution of large sparse linear systems of equations
arising from the discretization of fluid dynamics problems. In particular, we consid-
ered the solution of the Euler equations of compressible flow in two dimensions via
implicit finite difference methods as described by Pulliam®. This method is based on
the implicit discretization of the time dependent Euler equations, and it requires the
solution of a large banded system of equations at each iteration. Pulliam addresses
the problem of solving this large sparse system by using the Beam and Warming!
approximate factorization technique, which replaces the two-dimensional operator
with an approximate factorization into two one-dimensional operators. This fac-
torization, though approximate, is still relatively accurate. Nonetheless, the iterate
obtained in this fashion does not exactly satisfy the original linear system; we view
this as an ad-hoc method of solving the original system to reduced accuracy. In-
stead, we propose to investigate the use of the QMR method as an alternative to
the Beam and Warming method for solution of the linear systems of equations.
The remainder of the paper is organized as follows. In Section 2 and Section 3,
we present the background material on the solution of the Euler equations and on
the quasi-minimal residual algorithm, respectively. We describe the basic algorithm
and its application to the problem under investigation. In Section 4, we show some
numerical examples, and in Section 5, we make some concluding remarks.
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Martin Marietta Energy Systems.
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2. CFD BACKGROUND

2.1 THE EULER EQUATIONS

The flow of an inviscid, compressible fluid is governed by the Euler equations. These
equations written in generalized curvilinear coordinates are

8,:Q + 0. E+8,F =0, (1)
where ‘
p U ] pv
- - U+&p —1| puV +ngp
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e Ule+p) Vie+p)

The contravariant velocities are U = {yu+¢&,v, and V = nzu+n,v. The independent
variables are the fluid density p, the Cartesian components of velocity u and v, the
total energy e, and the pressure p. The equation of state is taken to be

p=(y-1)e - 2o +02)),

where + is the ratio of specific heats. The transformation to curvilinear coordinates
& = ¢(z,y) and 7 = n(z,y) is chosen so that the spacing in the curvilinear coordi-
nates is uniform and of unit length. The quantity J~! = (z¢y, — Z,¥¢) appearing in
the above equation is the inverse of the Jacobian of the transformation. In Eq. (1),
Or, O¢ and 8, represent differentiation with respect to time, the £ coordinate, and
the n coordinate, respectively. Eq. (1) relates the time derivative of the conservative
variables ¢} to the spatial differences of the flux vectors £ and F'.

2.2 DISCRETIZATION
Eq. (1) is differenced in time by the first order implicit scheme
Qn+1 _ Qn + h(Eg—H + Fr7+1) =0 (2)

where h = At is the time step. The flux vector terms in this equation are linearized
in time about Q"

En+1

E" + APAQ™ + O(h?) (3)
F™ = F" 4 BrAQ™ + O(RY) (4)

where A = OE/8Q and B = 8F/0Q are the flux Jacobians and A, B € R**4.
Substituting these relations into Eq. (2) gives

([ + hOe A" + hd, B"|AQ™ = —h(3cE™ + 8, F™).

The spatial derivatives ¢ and 8, are approximated by centered differences ¢ and
d, respectively, where Sgu; j = (Uit1,; — %i—1,;)/2 and Spu;; = (wij+1 — wij—1)/2.
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This results in the fully discretized form of the Euler equations
[T + hécA™ + hé,B"AQ™ = —h(6:E™ + 6,F"). (5)

Artificial dissipation is added to Eq. (5) for stability reasons. Implicit second and

mixed explicit second and fourth difference operators are used.. The full detaiis

of the implementation can be found in Pulliam?, and a complete description of

boundary condition treatment and artificial dissipation can be found in Pulliam3.
}

:

2.3 MATRIX FORMS

The expression [I + hd¢A™ + hd,B"] in Eq. (5) represents a large sparse matrix,
with the following structure:

[- I 4 B
—A . .
. A
—A I
-B I A
G= i -4
B
I A
- A
—-B -A I

The system Gz = b is usually not solved directly because of the large compu-
tational cost. Instead, the amount of work required can be greatly reduced by
approximately factoring the matrix into the product of two block tridiagonal sys-
tems, G =~ (G1G2, where G1G2x = b is easier to solve than the original system. The
matrices G; and G, have the form

I A
—A -

G,
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and _
I B

~-B I
This is the basis of the approximate factorization method proposed by Beam and
Warming?. It amounts to a decoupling of the coordinate directions. The solution
is obtained by solving the two block tridiagonal linear systems in succession by LU
decomposition: first Gy = b is solved for y, and then Gz = y is solved for z.

3. QMR BACKGROUND

The quasi-minimal residual method is a Krylov subspace method for the solution of
linear systems. It relies on the nonsymmetric Lanczos algorithm to build a basis for
the Krylov space, and it then uses the quasi-minimal approach to select an iterate
from the space. We will briefly describe the nonsymmetric Lanczos process and the
quasi-minimal approach; full details can be found in Freund et al 34:5. In practice,
iterative methods are often of little help without a good preconditioner; we will
therefore also briefly discuss preconditioning.

3.1 THE LOOK-AHEAD LANCZOS ALGORITHM

Given two starting vectors v; and w; and a matrix A, the look-ahead Lanczos
algorithm is a procedure for building two sets of basis vectors, {v;}7.; and {w;}7_;,
for the Krylov spaces K,(v1,A) and K, (w;, AT). Here, K,(v, A) denotes the nth
Krylov subspace generated by a vector v and the matrix A,

Kn(v, A) = span{v, Av,..., A" 1v}.

The two basis sets are generated so that they are block biorthogonal:

GnTyw - DO ifj=k . _
(WHTy {0 Hion k=Ll (6)
Here,

L e R B

Wk = [wnk Wng+1 "7 Wngyy-1 ] 3
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and

v = [Uny Unyr1 o0 wal,

wi = [wn, wWnp1 0 wal,
where

l=n1<ne < - < < - <y £n < Nyp1-

The basis vectors are thus grouped in blocks, indexed by k, with the current block
denoted by I. The blocks D) are nonsingular for ¥ = 1,..., — 1, and D®
is nonsingular if n = n;y; — 1. The main advantage of the look-ahead Lanczos
process is that the bases can be built with short block recurrences. The vectors
Unt+1 and w41 are built using the recurrences

Unt1 = Avp, — V([)U'n - V([_I)Vrn
Wny1 = ATwn, — WOp, — WDy,

At each step, one attempts to construct the recurrence coefficients u,, and v, so that
the new vector v, is biorthogonal to all vectors w, w2, ..., w, (and similarly for
wWn+1). If this succeeds, then v, starts a new block, and [ is updated accordingly.
Otherwise, the algorithm is said to have encountered a breakdown, and one selects
the recurrence coefficients u, and v, so that only the relaxed biorthogonality con-
dition (6) is enforced. In most practical applications, it turns out that typically,
each block involves only one vector, thus reducing the recurrences above to a simple
three-term recurrence. Thus, the entire process can be described in matrix form
as:

AV'n. = n+1Hn;
ATWn = Wn+1Hn, (7)
WIV, = D,

where D,, is a block diagonal matrix with the blocks D) on the diagonal, H, is
an (n + 1) x n block tridiagonal unit upper Hessenberg matrix, and

Voi=[v1 v2 -+ w,].

Full details on the implementation of the look-ahead Lanczos algorithm can be
found in Freund et al3:5.

3.2 THE QUASI-MINIMAL RESIDUAL APPROACH

One of the applications of the look-ahead Lanczos algorithm is to the solution of
linear systems
Az =b 8
by a Krylov subspace iterative method. Here, A is a nonsingular N x N matrix,
real or complex. Suppose that o is a given guess to the solution z. If one starts
the Lanczos process with v; = rg = b — Azg, then the Lanczos vectors v; will span
the Krylov space K,,(ro, A). A Krylov subspace method will then generate iterates
T, from
Tp = 2o + Vazn, (9)
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where z, is a vector of n coefficients. Using Egs. (9) and (7), the residual r,, is
given by

ro=b— Az, =19 — AV, 2z, =70 — Vo1 Hr 2.
Since v; = rg, this simplifies to

Tn = Vogt (61 - ann)

At this point, it would be possible to compute the coefficient vector z, that mini-
mized the norm of r,,, but this would require O(Nn?) work, which quickly becomes
too expensive. Instead, the quasi-minimal approach minimizes only the coefficient
vector ey — Hpz,. This is an (n+1) x n least squares problem, that is easily solved
by constructing (and updating) the QR decomposition of the upper Hessenberg
matrix H,. In addition, even though Eq. (9) constructs the iterate z, from all
the previous Lanczos vectors v;, it is possible to derive a short block recurrence for
the QMR iterates, so that the storage required by the method is low. The quasi-
minimal approach turns out to be powerful enough to allow one to prove several
important theoretical results about the QMR, algorithm, and in particular conver-
gence, making it the first algorithm in the class of Lanczos-based methods for which
such strong statements can be made. Once again, full details on the implementation
of the method and its properties can be found in Freund and Nachtigal5.

3.9 PRECONDITIONING

As already mentioned, in practice, the convergence of an iterative method such as
QMR is often dismal without the use of a preconditioner. This means that, instead
of solving the original linear system (8), one solves the equivalent linear system

Az =, (10)

where A = M AM; ', 3 = Mz, and b = M 'b. The matrices M; and M, are
factors of the preconditioner matrix M = M, M;. The preconditioning is called left,
if My = I, or right, if M; = I, or two-sided, if neither M; nor M, is the identity.
It is always possible to recover the original iterates z, from the preconditioned
iterates #,, and the hope is that the preconditioned system (10) will converge
faster than the original system (8) would. Thus, one obvious requirement is that
one must be able to cheaply compute solutions of linear systems involving M; and
M,.

It turns out that the convergence of Krylov subspace methods such as QMR
can be related to the distribution of the spectrum and to the non-normality of the
coefficient matrix A. In particular, convergence properties can be linked to the
problem in approximation theory of constructing a polynomial of as low degree as
possible, normalized to be 1 at the origin, and whose maximum on a set enclosing
the eigenvalues of A is as small as possible. This implies that the QMR method
will converge well on a matrix whose spectrum is relatively well clustered and
separated from the origin, since it easy to construct a polynomial small on such a
spectrum. Conversely, the convergence of the method is expected to be poor if the
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spectrum of the matrix A surrounds the origin. Thus, the common wisdom is to
design preconditioners that tend to cluster the spectrum of the matrix. However,
beyond that, the design of good preconditioners is still somewhat of a black art.
For the problems considered here, the QMR method converged well even without
a preconditioner, but this need not be the case in general.

4. NUMERICAL EXAMPLES

4.1 TEST CASE

The physical test problem is the flow in a channel with a ten percent circular arc on
the lower surface. The inflow mach number is 1.8. The mesh has 80 points in the
stream wise direction and 50 points in the cross flow direction. Points are packed on
the lower wall, near the circular arc. The linear system is solved for interior points
only and so there are 14976 unknowns (78 x 48 x 4 equations). This large number
of points is perhaps overkill for this simple geometry but is used to demonstrate the
ability of the iterative solver to address large problems. The flowfield is initialized
to free stream conditions and the solution iterated in time for 800 time steps. The
time step was taken to be constant over the entire mesh and for this problem was
At =0.01. _

The two approaches discussed in Section 2 and Section 3 were used to solve the
problem. First, the Beam and Warming method of approximate factorization was
used. Recall that in this technique, two block tridiagonal matrices whose product
is approximately the matrix in Eq. (5) are solved by LU decomposition. Solutions
resulting from this technique do not solve the linear system exactly. The second
approach used QMR to solve the original matrix from (5). In particular, we used
the transpose-free QMR algorithm, proposed by Freund?, using the codes from
QMRPACKS. The key strategy here was to solve each linear system to reduced
accuracy. The problem with this strategy lies in determining the required accuracy.
The Beam and Warming solutions satisfy Az = b where Az = Az + O(At?) and
A is the unfactored matrix. From this we conclude that the Beam and Warming
iterate gives ||Az — b|| ~ O(At?). It seems reasonable then to require a residual of
similar magnitude from the QMR method. Fig. 1 shows the residual norm of the
linear system due to the Beam and Warming iterate for the first 100 iterations (time
steps). The figure shows that the residual norm is indeed O(A¢#?). The convergence
criteria for QMR was selected to reduce the norm of the linear system below A#2.

As a result of this convergence criterion, QMR. converged in 4 to 8 iterations per
linear system. The time required to solve each system in this way was considerably
less than that required to solve the two block tridiagonal systems. Fig. 2 shows the
relative speeds of the two solution methods. The figure is a plot of Euler residual
vs time. Curve A is the approximate factorization method and curve B is the QMR
method. The test was run on an IBM RS/6000 530. Solving the linear systems
to reduced accuracy with QMR greatly reduces the overall computing time for the
problem.
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FIGURE 1: Linear system residual norm, Beam and Warming
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5. CONCLUSION

We examined the use of the quasi-minimal residual method for the solution of linear
systems of equations arising from the solution of the compressible two-dimensional
Euler equations discretized via implicit finite differences. The method was found to
be competitive, even without preconditioning, with the approximate factorization
technique proposed by Beam and Warming, at least in the context of computing
time-accurate solutions. We plan to further investigate the use of the QMR al-
gorithm for the computation of steady-state solutions; in these cases, preliminary
results indicate that preconditioning may be required to improve the convergence
of the iterative method.
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