o

ANL/ASD/CP—76106
DE93 002897

Comments on Advanced, Time-Resolved Imaging Techniques
for Free-Electron Laser (FEL) Experiments*

by
Alex H. Lumpkin

Advanced Photon Source
Argonne National Laboratory
9700 S. Cass Avenue - Bldg. 362
Argonne, Illinois 60439 USA
Telephone: (708)252-4879
FAX: (708)252-7187

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its usc would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed hercin do not necessarily state or reflect those of the
United States Government or any agency thereof.

*Work supported by ‘he U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. W-31-109-ENG-38.

The submitted manuscript has been authored MCUMENT lS UNL[M”’ED
by a contractor of the U.S. Government

under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royaity-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

BISTRIBUTION oF THIS MASTE R C’)‘/J

-l



Comments on Advanced, Time-Resolved Imaging Techniques
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Alex H. Lumpkin
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Abstract

An extensive set of time-resolved imaging experiments has been performed on rf-linac
driven free-electron lasers (FELs) over the past few years. These experiments have addressed
both micropulse and macropulse timescales on both the charged-particle beam and the
wiggler/undulator outputs (spontaneous emission and lasing). A brief review -of first
measurements on photoinjector micropulse elongation, submacropulse phase slew in drive
lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by
discussions of new measurements of 35-MeV electron beam micropulse bunch length
(<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation
beam profile measurements at gamma <80, and comments on the low-jitter synchroscan
streak camera tuner. These techniques will be further developed on the 200-650 MeV linac
test stand at the Advanced Photon Source (APS) in the next few years. Such techniques

should be adaptable to many of the present FEL designs and to scme aspects of the next

generation of light sources.



1. Introduction

As free-electron laser (FEL) designs and speculation push tc; shorter wavelength and
concomitant demands on accelerator performance (i.e., electron/positron beam quality), it is
appropriate to comment on advanced, time-resolved imaging techniques that have been
performed over the past few years and this year [1-3]. These experiments have addressed
both micropulse and macropulse timescales on both the charged-particle beam and the
wiggler/undulator outputs (spontaneous emission radiation (SER) and lasing). The
experiments have relied on converting charged-particle parameter information to optical
radiation via Cherenkov radiation (CR), optical transition radiation (OTR), synchrotron
radiation (SR), SER, and FEL. Then, advanced, imaging techniques based or; gated,
intensified cameras and synchroscan as dual-sweep streak cameras can be used to detect the
photons.

Besides the review of first measurements on longitudinal wakefields, first
measurements of photoinjector micropulse elongation, submacropulse phase slew,
submicropulse laser effects, and submacropulse wavelength shifts in FELs, etc., new
demonstrations are discussed. These include results on 35-MeV electron beam micropulse
bunch leﬁgth (<10 ps) measurements using OTR, nonintercepting beam profile measurements
using SR at gamma <80, and a new synchroscan tuning module with improved jitter and
resolution. The OTR measurements and the new tuning module results are combined to
address bunch length effects due to charge and/or transverse wakefield effects. These
concepts of diagnosis of FEL time-dependent aspects can be used to improve delivered

performance to the user community as well.



2. Imaging Background and Examples

The imaging techniques have the basic components of source, conversion mechanism,
detection, and data acquisition/analysis. Once the beam information is carried in the photon
field of appropriate wavelength for the detector (110 to 800 nm:S20 photocathode, 300 to
1300 nm:S1 photocathode), the gated, intensified cameras and streak cameras can be used.
The itnage position may correspond to spatial position, energy, or phase, while the image
profile may be spatial profile, energy spread, or bunch length depending on the experimental
setup.

Some examples of critical time-resolved imaging results are mentioned belov;/. Most
of these impacted transform-limited FEL bandwidth until the causes were addressed and the
effects reduced.

a) Observation of longitudinal wakefields in the Los Alamos wiggler [4].

b) Micropulse bunch length change during the macropulse (Boeing visible FEL) [5].

¢) Wavelength shift within a micropulse (Boeing visible FEL) [3].

d) FEL wavelength slew during a macropulse [6].

e) Drive laser phase slew during a macropulse [7].

Additionally, to improve our capabilities, a higher-Q tuner was obtained for our
Hamamatsu synchroscar: streak camera. The drive laser stability was evaluated by a demo
Hi-Q tuner, our new high-Q tuner, and the standard M1954 tuner as shown in Table I. The
jitter in the laser plus the camera of ~ 1 ps (rms) was obtained by assuming that the camera

resolution and jitter, the laser bunch length, and the laser jitter could be treated in quadrature.

>
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Since the jitter value is small compared to the bunch lengths of 8-10 ps, the absolute error for
this test is difficult to specify. However, the relative performance is seen to be in good
agreement. On the basis of this comparison, the new streak tuner and synchroscan streak
camera were installed in the accelerator vault for electron beam characterization described in

the next section.

3. New Results and Future Prospects

Recent results from the ongoing diagnostics development effort at Los Alamos include
optical transition radiation, synchrotron radiation, and synchroscan (high-Q) streak camera
aspects.

For reference, the beamline is shown in Fig. 1. The measurements are concentrated in
the region after the fourth accelerator with screen #4 plus the zero-degree port and 15° port
in the 30°-bend vacuum chamber. The first port is used to look down the bore of the
accelerator beamline to image the back interface of the interferometer via OTR’s forward
radiation. The second port is used to access SR emitted near the center of the 30° bend. The
diagnostics assembled around this region are shown in Fig. 2. In particular, the streak camera
viewed the OTR foil and the intensified charge-injection device (ICID) camera viewed the
SR source in these initial experiments for the following discussion.

In Fig. 3, the use of OTR as a bunch length diagnostic in the on-axis, center image is
straightforward with synchroscan technig:ies that synchronously summed 10’s of pulses. As
can be seen however, off-axis steering of the beam through tanks 3 a'nd 4 results in transverse

spatial kicks (head-to-tail) during the micropulse. As noted elsewhere [8-10], this diagnostic
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can then be used to guide the on-line compensation of wakefields in the accelerators by
steering in the fourth tank until the x-projection is minimized.

Another new result which has been reported by M.D. Wilke et al. [8], involves the
further demonstration of using synchrotron radiation to image noninterceptively the beam
spot in the 30° bend. To our knowledge no other FEL group (perhaps even linac group) has
worked at v <80 and obtained on-line results. In our intensifier, the S20 photo cathode with
quartz window has Q.E. from ~ 200 nm to 800 nm. At 40 MeV and for a 30 cm bend, the
critical wavelength, A, is 2 to 3 um, but this leaves 1/2 the power at shorter wavelengths
although in a narrow spectral regime. We estimated this four years ago and then zt last year’s
conferencge, Greegor and Lumpkin [11] reported more of the scaling calculations. Ti1e MCP
gain was actually turned to minimum for the 40-MeV, 20- us long macropulse, with 1 to 2 nC
per micropulse. Since the critical wavelength goes inversely with 73, the signal drop off
from 40 to 25 MeV is the combination of the 74 power term and the spectral shift (which
dominates$). In Fig. 4, the observed signal was normalized to charge, but no adjustment for
the $20 PC spectral seasitivity has been made. Since we use synchroscan streak techniques,
any imageable beam can also have its bunch leagth determined. The 25-40 MeV regime
should be of interest to several FEL labs since they operate in the,20-65 MeV regime (see
conferen;e proceedings). This appears to be an untapped technology for FELs. Just before
the conference, I used the relative other end of the SR spectrum (still visible photons) from a
3-GeV beam in a 12.8 m bend radius at SPEAR. We imaged a single bunch from one pass in

this bending magnet.
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Trends towards shorter wavelength, higher beam energies, and/or microwigglers
continue to make these techniques relevant. Effects during the microwiggler current pulse
over the macropulse could be assessed by time-resolved spectrometer work, for example.
The applicability down to the 110 to 200 nm region is direct, but an adjustment is needed in
the vacuum ultraviolet (VUV). Once the vacuum interface is made though, XUV and soft x-
rays are accessible from the instrumentation point of view.

The Fourth Generation Light Source Workshop [12] identified a number of key beam
parameters for linac-driven sources. Several of these are shown in Table II and are close to
those expected for the Advanced Photon Source (APS) undulator test line [13]. Adaptation
of diagnostic techniques for this regime at APS should provide interesting informatic;n to the
FEL community interested in self-amplified spontaneous emission (SASE) in the next few
years.

4. Summary .

In summary, time-resolved diagnostics are critical to the optimization of both
accelerator and FEL performance. These activities support the user demands for a stable
FEL. At this 1992 FEL conference, it is noted that several of the user laboratories have
developed their own versions of time-resolved techniques with image dissector fubes, fast
readout of linear arrays, etc. The interaction of experimentalists and theorists needs to be as
convolved as that of the electrons (positrons) with the electromagnetic fields in the FEL to
determine thc best way to reduce time-dependent effects. Finally, because of the nature of
these imaging techniques, they should be adaptable to many of the planned FELs and to some
aspects of the next generation of light sources where low emitiance, higher energy beams,

short waveléngths, microwigglers, etc. will be involved.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4
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Figure Captions

Schematic of the Los Alamos FEL beamline. The accelerator, wigglers, and some
diagnostics locations are indicated.

Schematic of an expanded view of the diagnostics assembled around the first 30°
bend in the beam transport. The streak camera views the back surface of screen 4
and one ICID views the SR source ata 15° port.

Composite synchroscan streak images of the beam x-profile and bunch length at
station 4. The OTR conversion mechanism is used to generate the visible image.

Dependence of observed SR signal in the intensified, charge-injection device (ICID)
camera on the electron beam gamma (energy).
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ADVANCED PHOTON SOURCE

Imaging Techniques Will Have A Number
of Diagnostic Applications

o Charged-particle beam parameters can be accessed by
intercepting and nonintercepting radiation conversion

techniques.

Intercepting: Fluorescence (FL)

,= Optical Transition Radiation (OTR)
Cherenkov Radiation (CR)

Nonintercepting:  Synchrotron Radiation (SR)
Undulator Radiation (UR)

« Conversion to photons allows visible, ultraviolet, or x-ray
imaging techniques to be used.

« Data acquisition through video digitizing and image

analysis.
Spatial
Position: Energy
Time (phase)
Size
Profile: Energy Spread

Bunch Length
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DUAL-SWEEP TECHNIQUE USED TO
DISPLAY SUBMACROPULSE EFFECTS

g Profile Analysis
(2nd Window)
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SYNCHROSCAN STREAK PROVIDES
BUNCHING DIAGNOSTIC FROM
OUTCOUPLED SPONTANEOUS RADIATION
(MACROPULSE)

FWHM
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MICRO PULSE LENGTH

MICRO PULSE LENGTH (psec)
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