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A MODEL OF ENERGY CONFINEMENT IN THE REVERSED FIELD PINCH 

by 

Guthrie Miller 

ABSTRACT 

Assuming Rusbridge's Tangled Discharge picture of 
the reversed field pinch, a simple parallel 
transport model describing energy confinement is 
obtained. 

I. INTRODUCTION 

Several of the observed properties of existing reversed field pinches are 

explained by assuming completely stochastic field lines. This model was termed 

the tangled discharge model by Rusbridge who first proposed it for Zeta in the 

1960's (published accounts are more recent1'2). One of the most noteworthy 

features of reversed field pinches, the tendency for discharges to relax to the 

Taylor state with j = yB and y constant, is explained in a very simple and 

natural way in this picture. For plasma pressure and acceleration terms in the 

equation of motion small,it is generally true that j • jiB; however, u is not 

spatially constant. But from 7»j « 0, it follows that B«Vy * 0 or that u is 

constant along a field line. Thus, if individual field lines wander in a 

random manner throughout the plasma, and in particular, In the limiting case 

where a single field line ergodically fills the entire plasma, |i will b« 

constant. The origin of the stochasticity is presumably tearing mode activity, 

driven by parallel current, which causes islands to form, in conjunction with 
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the high density of rational surfaces in reversed field pinches, which readily 

allows the islands to overlap. Tearing mode stable configurations exist; 

however, resistive diffusion in a driven system leads to steady-state profiles 

with v peaked on axis that are not stable. In the tangled discharge picture, 

resistive diffusion is modified by the nonexistence of flux surfaces through 

electrostatic effects, and stable steady-state configurations with flattened u 

profiles are possible. The steady - state sustainment of reversal (with a 

constant applied electric field) comes about quite differently in the tangled 

discharge model than in dynamo effect theories,3 which rely on vxB effects. 

II. ENERGY CONFINEMENT MODEL 

The energy confinement of a plasma with stochastic field lines can be 

estimated by making the simplifying assumption that cross field transport is 

completely negligible. The system is then characterized by a typical field 

line with length Z that begins and ends on the wall. To further simplify, slab 

geometry is assumed as shown in Fig. 1. Equilibrium in slab geometry demands 

Fig. 1. 
Cartesian coordinate system used for the slab model 
of the reversed field pinch. 
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that 1B| be spatially constant so that the constancy of p along a field line 

implies constancy of j as well. The steady-state electron energy equation is 

-fLq + nj2 = o (1) 
dz 

where z is a length coordinate along a field line, q is the parallel energy 

flux, and nj is the ohmic heating power per unit volume. 

The energy flux q (in the -z direction) is given by 

q = K £ E + 1.5 1 T (2) 
dz e 

with the first term representing transport of energy by heat conduction and the 

second term transport of energy by convection caused by the electron flow 

implied by the current. From Braginskii, *• K « off ' and n - B/T3'2, where 

age , with e the electron charge, is a dimensionless number given in Table I. 

TABLE I 

DEPENDENCE OF MODEL PARAMETERS ON Z 

Z 

1 

2 

3 

4 

a6e2 

1.61 

2.16 

2.44 

2.62 

3.63 

J 
1.4 

1.04 

0.92 

0.86 

0.62 
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This system of two equations can be reduced to the following universal 

form: 

dg 
d? f3/2 

df = Y ^ , (3) 
dC 7572 

where f, g, and £ are the scaled temperature, energy flux, and length: 

f = T 

T max 

8 = - q 

1,5 i" Tmax 

- f • 

with 

L » 1.5 T m a X 

!\inJ 

The quantity Y Is given by Y * (1.5) /(oPe2). The numerical value of Y is of 

order 1 but somewhat dependent on the effective Z of the plasma, as shown in 

Table I. 

Analytic solutions can be obtained in the two simplifying cases of 1) 

convection losses only, and 2) conduction losses only. The first case 

corresponds to the limit Y + " in Eq. (3) and has the solution 

g « f 
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r 5 i 2 / 5 

f - (1 - 7 C) 

In this case the maximum temperature point is at one end of the system and all 

the losses occur at this end, as would be expected for purely convective 

losses. The purely conductive solution, which in the limit 7 + 0 is the 

solution of Eq. (3), is given by 

rl-f2 1/2 

r - _!_ f1 u^/2 
Yl/2

 jf ( H2)l/2
 U 

In this case the maximum temperature point is in the center and the energy 

losses occur equally at the two ends of the system. 

•Numerical solutions of Eq. (3) for the two cases Z - 1 and Z * 2 are shown 

in Fig. 2. The numerical solution shares properties of both the convective and 

conductive limiting cases. The temperature distribution f(C) seems to lowest 

order to have a conductive rather than convective character. The' energy flux 

g(0> on the other hand, seems more aptly described as convective. 

III. DISCUSSION 

As seen from the behavior of g in Fig. 2, the energy losses are not 

symmetric at the two ends of the system and almost all the energy is lost In. 

the convective direction. This agrees with experimental observations of damage 

patterns at the wall in ZT-40M. Figure 3 is a photograph of a llmiter used in 

ZT-40M, showing asymmetric damage. This observation would seem to imply that 

current carrying field lines from deep within the plasma intersect the limiter. 

If edge field lines on good flux surfaces intersected the limiter, the damage 

pattern would be symmetrical or perhaps come preferentially from the direction 

electrons on outer field lines are accelerated by the applied electric field, 

opposite from the observed direction. 
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Fig. 2. 
Universal solutions for temperature, f, and energy 
flux, g, as functions of length C Part (a) shows 
the solution for Z « 1 and part (b) the solution 
for Z - 2. 



Fig. 3. 
Limiter damage pattern. This mushroom-shaped 
limiter was placed on the outside of the torus. In 
the photograph, the toroidal current, flux, and 
electric field are directed from left to right. 
The reversed field at the limiter is directed from 
bottom right to upper left. The energy flux to the 
limiter is in the direction the electron drift 
would be, assuming the field lines intersecting the 
limiter have wandered deep within the plasma. 
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A consequence of this energy confinement model is the convective scaling 

of energy confinement time, T = 1.5n/Tdz/Aq, where n is assumed co.nstant and Aq 

is the total energy flux from both ends of the system, 

T = 0.49i^ , Z-l 
3 

x = 0 . 4 3 - ^ , Z = 2 

Another consequence of the model, obtained from the definition of the scaling 

length L, is that the maximum electron temperature scales like 

T ~ (jJt)2/5 

where SL is the field line length. These same scaling relations are obtained in 

the two limiting cases of pure convection and pure conduction. Remarkably, the 

numerical factors in the two extreme cases are not greatly different from the 

values obtained by numerical integration of Eq. (3). The reason for this fact 

is the relationship between ohmic heating and thermal conductivity that causes 

age to be of order 1. 

Experimental values of T and j in ZT-40M (300eV, 500A/cm2) imply quite 

long lengths on the order of 1 km. Using a typical value of n (2 x 101J c m - J ) , 

the model predicts confinement times on the order of 0.5 ms, roughly in 

agreement with experimentally measured values. 

Equation (3) is independent of density so density explicitly enters only 

in the determination of the total energy content of the system. However, 

density does affect the mean free path, which is implicitly assumed to be 

sufficiently small. Except for a Z dependent numerical factor of order 1, the 

length in units of the mean free path is equal to the inverse of the drift 

parameter (the electron drift velocity divided by the electron thermal 

velocity). This can be seen by expressing the scaling length in terms of the 

mean free path. As the drift parameter becomes large, the assumed Braginskii 

transport is no longer valid for two'reasons: the conducted heat flux becomes 
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unreasonably large (exceeding the kinetic flux limit), and the system length 

becomes inadequate for thermalization of the electrons. 

The condition that the drift parameter be near 1 is also the extreme 

runaway electron condition. While the drift parameter is large in ZT-40M, 

hard x-ray signals (energy > 50 keV) do not seem to imply a large number of 

runaways. This fact would be explained by finite length field lines. For 

example, assuming a 50-V loop voltage (0.07 V/cm) and 1-km field line length in 

ZT-AOM, the maximum runaway electron energy would certainly be less than 7 keV 

and hard x rays would be entirely absent. 
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