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High-power electromagnetic waves at frequencies ranging from a few megahertz to a few
hundred gigahertz serve many important functions in modern fusion experiments.
Probably the most important application is plasma heating. Ignition of a fusion reactor will
require a plasma to be heated until the average particle energy is -10 keV (temperature >
10** K). This is routinely accomplished in existing large devices. Waves at the ion
cyclotron frequency (typically f = 30 to 100 MHz) are very important for fusion devices
because of low cost/unit power compared to other frequency regimes and because of their
ability to directly heat fusile ions. These waves are also useful for modifying the velocity
distribution for improved stability and to drive currents which affect plasma equilibrium.
Study of this frequency range is, however, greatly complicated by long wavelengths
compared to device size, nonsymmetric device geometry, and the tendency of the waves to
linearly transform to shorter wavelength modes. Geometrical optics is generally
inapplicable. Thus, codes have been developed to solve the vector wave equation in
toroidal geometry for hot plasmas having anisotropic, spatially nonuniform, dispersive
constitutive relations.

In this paper we describe the code ORION [1-4] developed at Oak Ridge National
Laboratroy and present illustrative applications to a range of fusion experiments. Specific
applications of the code include detailed modeling of the antennas used to launch the
waves, calculation of wave propagation throughout the plasma, and modeling of the
absorption of the waves by the plasma.

1. Mathematical Formulation

For purposes of this paper we restrict consideration to toroidally axisymmetric devices such
as tokamaks (Fig. 1) [5,6]. These devices consist of a toroidal shell vacuum vessel,
assumed to be perfectly conducting, filled with a hot magnetized plasma. The plasma is
contained by a magnetic field B°(x), which on the time scale of the wave motion, 1/f, is
steady state. The field lines of this equilibrium magnetic field wrap helically around the
device and form approximately elliptical, nested surfaces called flux surfaces. The plasma
density and temperature are approximately constant on flux surfaces; therefore, it is
sometimes convenient to introduce a radial like coordinate, y, which labels the flux
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surfaces. The magnetic field strength does not follow the flux surfaces but varies roughly
as 1/R, where R is the distance from the axis of symmetry. Another convenient coordinate
is the poloidal angle, 9, which is measured the short way around the torus (see Fig 1).

Conceptually the wave formulation is straightforward. The waves of interest have periods
much shorter than any other time scale (e.g., heating time or plasma flow time) and the
absorption processes are linear, so we may safely assume the solutions to be time
harmonic. Thus, the wave equation is simply the VxVxE Maxwell's equation,

0)2
V x V x E j - G-E = icoj e x t (1)

c

where G is the plasma conductivity tensor operator and J e x t is the external current due to
the antenna. Boundary conditions are that the tangential components of E vanish on the
conducting wall. A second version of the code, which is needed for certain applications as
explained below, introduces the potentials A and O along with the Coulomb gauge VA =
0. Then the waves are described by

V2A + ^- O-A + $- G-VO= - J e x t (2)

V ( G V O ) - iu) V-(G-A) = - p e x t (3)

where p e x t is the external charge on the antenna. The boundary conditions are At = 0 and

O = 0 on the conducting wall.

The field quantities and source terms can be expanded as a Fourier series in <J>:

E(r,e,4>) = X EN(r,6) e*N* Jext(r,9,<» =
N

Since the plasma and boundary are uniform in the <j> coordinate, the Fourier modes are
uncoupled. The matrix to be inverted is two-dimensional (2-D), although the structure of
the summed fields is three-dimensional (3-D). The 2-D equations obtained by substituting
Eq. (4) into Eqs. (l)-(3) are solved by finite difference techniques.



2. Plasma Constitutive Relations

The primary challenge in this work is to correctly model the current distribution induced in
the plasma by the wave fields. To place the complexity of plasma wave phenomena in
perspective, recall that in a uniform volume of air there are two basic waves: acoustic
waves, which are longitudinal, and light waves, which are transverse. These waves are
non-dispersive (Vp âse = <o/k = const) and except in the most extreme cases are uncoupled.
However, in a hot magnetized plasma an infinite number of distinct waves exist [7].
Polarizations range from purely longitudinal (electrostatic waves) to purely transverse
(electromagnetic waves). Phase speed and wavenumber can vary appreciably over short
distances within the plasma volume. Waves can be very strongly absorbed, with damping
length < X. And local matching of wavenumber and polarization can occur, resulting in
conversion from one wave type to another.

The simplest model is the cold plasma approximation. In the older literature, particularly in
the ionospheric propagation field, this is referred to as magneto-ionic theory [8]. If the
average particle velocity, v ^ ^ a i , is much smaller than the wave phase velocity, vp h a s e =

co/k, the particles experience an oscillatory acceleration which is proportional to the local
electric field. The wave-particle interaction is then approximately local in space and
harmonic in time. The plasma current is of the form

Jplasma («.*) = <T(x,G))-E(x,t) (5)

where O(x,co) is a nondiagonal tensor that depends locally on the equilibrium magnetic

field vector B®(x) and the densities of the various plasma particle species n; (x). This

tensor is singular, permitting resonant absorption, at surfaces where the local cyclotron

frequency (fij = ejB°/mjc) equals the wave frequency for some species j . There also exist

other resonances (wavenumber k—» °o) called hybrid resonances and cutoffs, or surfaces

of reflection (k—» 0), within the plasma volume.

This simple model describes the plasma response reasonably well over most of the plasma.
However, near resonances the wave phase velocity, co/k, decreases and may approach the
particle thermal speed. Also near cyclotron resonance, the Doppler-shifted wave frequency
in the particle frame of reference, CO - kv, may equal the local cyclotron frequency. Here v
is the particle velocity parallel to the wave. In either case the particle experiences a slowly
varying accelerating field and may have coherent interactions with the wave over extended
regions of space and time. In such cases the conductivity is a nonlocal, integral tensor
operator on the wave field:



Jplasma(x,0 = JdVdt ' C(x,x',t,t')E(x',t';) (6)

This introduces dissipation throughout the plasma volume (not just at singular surfaces)
and introduces a number of new, short-wavelength, electrostatic modes called Bernstein
waves. The mathematical problem in this form is equivalent to an infinite-order differential
system. In the ORION code the integral operator is expanded to second order in the
gyromotion of the plasma particles about the equilibrium magnetic field [9]. In this
expansion the conductivity tensor remains local, but now depends on a local wavenumber
k, which is determined from a local dispersion relation. In this formulation, conversion of
the electromagnetic ion cyclotron modes to Bernstein modes is neglected but the energy lost
from the incident ion cyclotron waves is adequately modeled.

3. Numerical Considerations

Two different situations occur in practice. Case (1): In most cases of interest the plasma
densities in tokamaks are sufficiently high that the electron conductivity parallel to B° is
much greater than that perpendicular to B°. In that case the wave electric field parallel to
B°, E||, is very much smaller than Ej_ and can be calculated perturbatively. The numerical
approach in this case is to solve Eq. (1) for Ej.. Case (2): When low plasma densities are
of interest, for example for modeling the outside edge near the antenna, the parallel
conductivity may be much smaller so that E|| must be solved for directly. In this case the
numerical approach is to solve Eqs. (2) and (3) for the potentials. This approach resolves
mathematical difficulties associated with direct inversion of the VxVx operator and
properly includes electrostatic effects. Special care must be taken to ensure that the finite
differencing scheme is consistent with the gauge condition V -A = 0. The finite difference
representation preserves the natural grouping of partial derivatives as they occur in the
differential equation and in this sense is "conservative." In both cases the finite difference
problem is solved by direct matrix inversion using the MA32 package [10] for sparse,
unsymmetric systems. This method is based on Gaussian elimination using a modification
of the frontal scheme of Hood [11]. It has the advantage that only a small part of the total
matrix need be stored in memory at one time.

4. Results from the ORION Code

Figure 2 shows calculations for the polotdal cross section of the Alcator C-Mod tokamak,
which is under construction at MIT. The height of the vacuum vessel is about 75 cm. The
axis of symmetry is to the left of the cross sections shown, approximately 66 cm from the
center. For these calculations, the plasma consisted of electrons with peak density ne = 4 x
1014 cm'3, deuterium ions with density nrj> = 0.96ne, and a minority hydrogen ion species
with density nn = 0.04ne. The temperature of all species was T = 2 keV. The magnetic
field strength at the center was BQ = 5.0 T. The wave frequency was 80 MHz. The



antenna consists of a strap of width Ls = 12.5 cm located outside the plasma in the recessed
area to right [see Fig. 2(a)J. The vertical dashed line is at the location of the hydrogen
fundamental cyclotron resonance (QH = w). Another plasma resonance called the ion-ion
hybrid resonance lies just to the left of the hydrogen fundamental. Figure 2(a) is a grey
scale intensity plot of one component of the wave electric field, Re{Ex}. The free space
wavelength at 80 MHz is 375 cm. However, it is seen that the high effective refractive
index N of the plasma to these waves reduces the actual wavelength in the high density,
central region to X = c/coN ~ 6 cm. In the outer regions where the density is low, the
refractive index is also small. Sirtce the finite extent of the antenna in the toroidal direction
induces a minimum toroidal wavenumber, kj = 1 A T ~ l / ^ s » M/c> and the radial
wavenumber ICR satisfies 1CR2 = N^-aP-fc^ - kj^ < 0, the radial wavenumber is imaginary at
the outside of the plasma. The waves are therefore evanescent and must "tunnel" through
to the inner region. One can see the focusing toward the center of the propagating waves
due to the radially decreasing refractive index and the decrease in wave amplitude due to
absorption at the cyclotron and hybrid resonances.

The primary quantity of interest in these calculations is the spatial distribution of power
absorption. This, as shown in Fig. 2(b), occurs at the hydrogen cyclotron resonance and
the ion-ion hybrid resonance. A check on the accuracy of the computation can be made by
comparing the total absorbed power obtained by integrating E*-CJ-E over the plasma
volume with the total radiated power obtained by integrating E*- Jex-t over the antenna.
For the present calculations, these agree to within 8%. This calculation also gives a useful
quantity, the antenna load resistance. To obtain these results the grid consisted of 101
radial mesh points and 50 poloidal points. A total of 50 toroidal Fourier harmonics were
included in the summed field, requiring 80 min of CPU time on a Cray 2. It was possible
to perform these calculations with full memory storage; 9 million words were required.

An important application of codes such as ORION is to the detailed modeling of fields near
the antenna structures. This is both for the purpose of understanding the radiation
characteristics of the antennas and for minimizing high-voltage breakdown and sputtering
due to near fields. A common technique for improving antenna performance is to eliminate
stray toroidal electric fields by placing a Faraday shield consisting of conducting bars in the
toroidal direction in front of the antenna.

Figure 3 shows a sequence of calculations for the DIII-D tokamak at General Atomics that
focuses on the details of the fields near the antenna. This is a somewhat larger device than
Alcator C-Mod, with a 260-cm-high vacuum vessel and a radius from the symmetry axis to
the center of the cross section of 167 cm. For these calculations the peak electron density
was ne = 8 x lO1^ enrr̂  and the plasma temperature was T = 3 keV. The magnetic field at
the center was Bo = 1.7 T. In Fig. 3(a) the solution for Im{Ey} was computed across the
entire cross section using the version of ORION which solves Eqs. (2) and (3). In Fig.
3(b) the computational domain was reduced to that indicated by the rectangular box. Thus,



the density of grid points in this region was increased by a factor of about 3. Again,
perfectly conducting boundary conditions were imposed at the edge of the domain, but
reflections were eliminated in the portion of the boundary lying in the plasma by
introducing an artificially large collisional absorption near the edge. Except near the
artificial absorber the agreement between the solutions in Figs. 3(a) and 3(b) is good.
Figure 3(c) shows the same case but with conducting metal rods inserted as a Faraday
shield. One can see the field compressed between the shield blades and some perturbation
of the radiated fields in the plasma region. These calculations have proved very useful in
understanding the mechanism for increased plasma sputtering due to RF fields near
antennas [4]. For this calculation the grid was an 85 x 85 rectangular mesh. Owing to the
increased number of mesh points and increased number of equations per point (AJJ and O
are now included) it was no longer possible to invert the matrix in full storage. A 100
million word disk file was required. Solution for each toroidal mode takes 16 min of Cray
2 time. The solutions shown in Fig. 3 represent a single mode.

5. Conclusion

We see thaJ it has now become feasible to study wave phenomena in very complicated 2-D
geometries and in nonuniform, dispersive, dissipative media. These calculations are of
great practical importance for understanding the results of fusion experiments and for
designing future devices. The assumption of a 2-D boundary is adequate for studying the
penetration of the waves into the center of the plasma and for calculating the absorption
profiles. It would be desirable to include the three-dimensionality of the antenna structures
at the plasma edge. However, it does not appear computationaly feasible to include such a
complicated medium as a hot plasma in a 3-D code at this time.
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Fig. 1. Tokamak - toroidally symmetric geometry.
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Fig. 2. Alcator C-mod D-H.
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shield blades

Antenna

(c)

Faraday shield blades

Fig. 3. Detailed modeling of antenna near fields in Tokamak geometry.


