BN-SA-3667 HEDR

Hanford Environmental Dose
Reconstruction Project

isional Draft

Pre-Dec

BN-SA--3667-HEDR

|

DE93 006345

for

Software Development Plan

DESCARTES and CIDER

*Joaaayy Aouale Aue 10 JUIWUIIA0N) SNBIS PANU()
9Y) jo 350y} 1091Jal IO JJEIs A[LIBSS0SU J0U Op UIISY passardxs sioyine jo suowuido pue
$M3MA 9] Joorayl A>usfe Aue Jo JUSWUIIAOD SAEIS PINUN} A Aq Suuoaej o ‘uonepusw
-WOJRI JUIWISIOPUS S} A[dWI JO JIMNSUCO A[LIBSSIOSU JOU SIOP ISIMIGYIO IO ‘ISINJOBJNUBW
“YIRWIPE) ‘SWeU dper) AQ I0IAIS JO ‘ss3001d “yonpoid Jeidrowmos dijdads Kue 03 uldIsy 20U
-13J9y "SIy8u poumo Ajoreauid o8uLijur 10U pinom 3sn sy JeY) SULsAIdal 1o ‘pasojostp ssacord
1o “yonpord ‘snjeredde ‘soneuriojul Aue jo ssau[njosn Jo ‘ssauaRldwiod ‘Aseinaoe ayy of Aijiq
-isuodsaz Jo Ayjiqer| [e3s] Aue sewnsse 10 ‘parjdunt 1o ssadxo ‘fyuerrem Aue soyew ‘ssakojdurd
13y jo Aue Jou ‘Joarayy Aouale Aue JOU JUSUILISA0L) SIBIS PAIIU() Y} ISYISN “JUSWIUIIACL
sB1S paNtu() 2 jo KousBe ue £q pososuods Jiom Jo Junoooe Ue se posedord sem jiodas sigy

ATNIVIOSIA

p
@
o
o
.w o |
o g @
& e I L
o X) c
2 x S
o © =
c . - ©
oo = o
o9 S @
em — m m
>3 W. Q =
@ o S« B
(]] o 0
> > c
[o £
(a] (a] %
o o -
@ o
Q o] c
- O @
o o I
2 | o
= XI K]
(] . Q
w) S
. [
3 @ ©
— 1 (51
@ = 3
a i3] (17]
5 0§ 0§ 5
.m 3] 5] 3]
< c c c
» 3 [e] o] [e]
M“ &) O O

Chris Larmy, HEDR Quality Engineer

Approve:

Dil Shipler, HEDR Project Manager

= e

DISTRIBUTION OF i #iio DOGOUNMENT IS UNLIWVITER

1.0

2.0

3.0

4.0

5.0

6.0

Table of Contents

Introduction« L L L L e e e e e e e e e e e e e e e e
1.1 PUPPOSE . & v v v v i e e e e e e e e e e e e e e e e e e
1.2 Background L . L o e e e e e e e e e e e e e
1.3 Applicable Software Requirements
1.4 Description of the Codes

1.4.1 DESCARTES« i ¢t o i v v e e v ot o ot e o e

1.4.2 CIDER . . .« © i i i e e e e e et e e e e e e e e e

Staffingand Budget 0o d e e e e e
2.1 Code Development Team v ¢ ¢ ¢ ¢ v ¢ v o o v o v o
2.2 Configuration Management
2.3 Quality ASSUranCe v v ¢ v o o o o o o o o o o o o 0 o
2.4 Budget e e e e e e e e e e e e e e e

Development Standards ¢« . oo o e e e
3.1 Programming Language v 0 e 0 e e e e e e e e
3.2 Modularity of the Codes ¢ . ¢ v v o v v v v o
3.3 Portability of the Codes « ¢ ¢ ¢ ¢ v v v v v v v o
3.4 Code Internal Documentation
3.5 Setting of Array Limitso oo o000

Software Development Management
4.1 Management Plans ¢« v v v vt hh e e e e e e e e
4.2 Facilities Required ¢« o v v v o v v o v e e
4.3 Linkages to other HEDR Tasks ¢« ¢ oo v v o
4.4 Contingency Planning & & ¢« ¢« 4 ¢ v e 4 e e e e e
4.5 Project Records & v v v v vt e e e e e e e e e e

Configuration Management+ . v o v 0o .
5.1 Configuration Management Plan
5.2 CM of Documentation ¢ ¢ v v i oo e
5.3 CMof Source Code ¢ v vt ¢ v v v v v o o e v e e
5.4 CM of Executables and Large Data Files
5.5 Change Control ¢ « ¢ ¢ v i i e e e e e e e e e e

Documentation Required ¢ ¢ ¢ v o v e e e e
Software Development Plan ¢ oo oo .
Interface Requirements ¢« . ¢ ¢« ¢ 0 o e v v e .
Data Dictionary ¢ « ¢ i i e e e e e e e e e e e
Software Design Documentation
Module Development Folders o ..
Verification Plans ¢ ¢ ¢ o v i v e e e e .
Verification Procedures and Test Cases
User Manuals & . ¢t ¢ v v v e e e e e e e e e e e e e

(o X = W< e e e We el
e o o o e e e o
O~NPUI BN -

P prd Pk fd o Sd fd

OO0 NNNNNN (e = W e We W) Re) Tt oron LW WWWWw NN

Table of Contents
7.0 Software Life Cycle Model and Requirements

Requirements Phase00,
Design Description Phase
Implementation Phase
Final Internal Development Review
Testing and Installation Phase
7.6.1 Module Testing ¢ v v v v v v v v ..
7.6.2 Integration Testing ¢
7.6.3 Independent Team Testing
Operation and Maintenance Phase
Development of Documentation
7.8.1 Verification Plan Development
7.8.2 Test Procedures and Test Cases
7.8.3 User Documentation

NN
a\us-th»—-

~N -~
o~

8.0 Activities, Deliverables and Schedules
8.1 Deliverables ¢ ¢ i i i i e e e e e e e e e e e e e
8.1.1 Code Development Task Deliverables

8.1.2 Other HEDR Deliverables

8.2 Schedule for Activities ¢ v v v v v v v ..

9.0 List of Abbreviations i i i e e e e e e e e e

Exhibits

Exhibit 1: Software Design Description Content
Exhibit 2: Software Verification Plan Content
Exhibit 3: Test Procedure and Cases Content
Exhibit 4: Software User Documentation Content
Exhibit 5: Module Development Folder Content
Exhibit 6: Code Walkthrough Review Checklist

ooooooooooooo
oooooooooooooo

ii

Development Planning « . v v v v e e e e

1.0 Introduction

1.1 Purpose

This Software Development Plan (SDP) outlines all software activities required
to obtain functional environmental accumulation and individual dose codes for
the Hanford Environmental Dose Reconstruction (HEDR) project. The modeling
activities addressed use the output of the air transport code RATCHET to
compute radionuclide concentrations in environmental pathways, and continue on
through calculations of dose for individuals.

Work items covered in this SDP are those specific to the code development
team. Some items are mentioned that will be performed by staff on other HEDR
tasks. Any activities or deliverables not the responsibility of the code
development team will be specifically identified as such.

1.2 Backaround

The Hanford Environmental Dose Reconstruction (HEDR) Project has a deliverable
in the June 1993 time frame to be able to start computing doses to individuals
from nuclear-related activities on the Hanford Site during and following World
War II. This project has high visibility with the client (Center for Disease
Control [CDC]) and with the public through a Technical Steering Panel (TSP),
which pr?vides technical girection to the HEDR Project.

A war ireme

The software requirements for this software development task are given in the
document "Software Requirements Specification for the Hanford Environmental
Dose Reconstruction Project Air Pathway Environmental Accumulation and Dose
Models", draft dated November 10, 1992.

1.4 Description of the Codes

The Software Requirements Specification (SRS) identifies the need for two
separate codes to handle the environmental accumulation and individual dose
calculations. The codes will be named DESCARTES and CIDER, respectively.

1.4.1 DESCARTES

The DESCARTES code will compute the environmental concentrations of
radionuclides and pass them to the CIDER code. The projected size of the code
is 4000 lines.

1.4. IDER

The CIDER code will compute doses and their uncertainties for individuals
living in the contaminated environment computed by DESCARTES. The projected
size of the code is 3000 lines.

2.0 Staffing and Budget

The mix of technical skills required to produce and document the DESCARTES and
CIDER codes include the following areas of expertise: i) design of data flow
and program logic, ii) FORTRAN coding, iii) C coding, iv) Unix operating
system, v) writing of documentation, and vi) configuration management.

2.1 Code Dev ment Team
The code development team will consist of the following five people.

« Paul Eslinger - Development Team Leader
Skills: management, FORTRAN coding, writing documentation, and stochastic
applications
Education: BS, MA in mathematics, Ph.D. in statistics

+ Terri Miley
Skills: Writing documentation, FORTRAN coding

+ Steve Ouderkirk '
Skil1s: FORTRAN and C code, code requirements, code design, writing
documentation

« Will Nichols
Skills: FORTRAN coding, code -asign, writing documentation

+ Kelly Lessor
Skills: Unix operating system, FORTRAN and C coding

2.2 Configuration Management

The team member that will address configuration management issues has not been
identified. This team member will be identified after the Technical Steering
Panel (TSP) authorizes funds for the continued development of DESCARTES and
CIDER. A decision by the TSP is not expected until after January 8, 1993.

2.3 Quality Assurance

The HEDR quality engineer, Chris Larmy, will assist the code development team
with quality assurance related issues.

2.4 Budget

The budget for the code development team is $100K between October 1, 1992 and
January 8, 1993. This budget is not enough for the team to work full-time,
therefore, Steve Ouderkirk will work full-time; and Paul Eslinger, Terri
Miley, and Will Nichols will work about 2/3 time.

The budget after January 8th, 1993, is still to be negotiated.

3.0 Development Standards

Required standards and conventions in the design and coding are discussed in
this section.

3.1 Programming Lanquage

The codes will be developed in FORTRAN or C. At the current time the choice
is to use FORTRAN for DESCARTES and C for CIDER. A mix of the two languages
is permissible even within the same code, if required to achieve timing
requirements or to meet disk space limitations.

Code written in FORTRAN shall be written to ANSI Standard FORTRAN 77
conventions. Any extensions to the language standard that are used must be
identified and the reason for use documented.

Code written in C shall be written to ANSI Standard C conventions. Any
extensions to the language standard that are used must be identified and the
reason for use documented.

Verification that the code is written to the p:rogramming language standards
will be done in two ways. First, during the code walkthroughs the reviewers
will be instructed to look for nonstandard language use, and second, options
are available on the language compilers to identify nonstandard syntax and
constructs.

3.2 Modularity of the Codes

The code shall be designed in a modular function. In general, a module should
perform only one function. A particular function that is performed in several
places in the codes should be implemented in a single module. Verification of
the modular design of the code shall be performed in the final design review.

3.3 Portability of the Codes

There is no requirement for the code to be portable to any machine other than
the HEDR Sun. However, use of only standard language features will enhance
the future portability to another platform.

3.4 Code Internal Documentation

Each module, function, or subroutine of the code shall contain internal
comments. The purpose of the comments is to allow a person other than the
developer to follow the program logic and be able to modify the code.

Each
info

module shall contain a header that incorporates the following
rmation:

name and version of the module

date of completion

« history of modifications and modification dates

Each

purpose of the module

short description of the algorithms in the module

major assumptions

a description of all input and output variables, including data type,
storage, accuracy, and units if applicable

references, if applicable

calling sequence

error reporting and/or reccvery

auxiliary routines needed

variable in a common block or global storage location shall be described

in embedded comments. The comments shall describe the purpose of the variable

and

identify any constraints on the use or modification of the variable.

3.5 Setting of Array Limits

A11 length of arrays or dimension statements shall be set using the FORTRAN
PARAMETER convention or the C #define convention.

4.0 Software Development Management

4.1 Management Plans

The work performed in this activity is controlled by the HEDR Project
Management Plan and the HEDR Environmental Accumulation and Dose Code
Development Work Plan (October 30, 1992).

4.2 Facilities Required

The software shall operate on the HEDR Sun 690 platform. The machine has 128
Mb of memory and approximately 24 Gb of disk storage. Each member of the
development team requires simultaneous access to the HEDR Sun.

4.3 Linkages to other Task

It is recognized that this coding effort will use data produced by several
other HEDR tasks. The data is required to allow the environmental pathways
and dose codes to be run to completion. Interface definitions, test files and
final data files must be available on a timely basis for the code design to
procreed. It is assumed that the other HEDR tasks will be able to provide the
data in the agreed upon format to the code development task. Impacts on the
scheduled deliverables may occur if this assumption is incorrect.

The code development team will work with the HEDR Technical Turnover lead,
Bi1l Farris, in defining interactions with other HEDR tasks.

4.4 Contingency Planning

The software development and documentation schedule is very tight for meeting
a June, 1993, production schedule. Funding perturbations, hardware or system
software problems, or staff turnover may all impact the work schedule.
Contingency planning is limited, at this tiwe, to identifying any difficulties
- as e?r1y as possible, and promrtly bringing them to management attention for
resolution.

4.5 Proje~t Records

A1l documents or code listings produced by the development team shall become
project records. The time that each item becomes a project record is the time
jdentified in later sections of this SVP where the item is baselined or
submitted to configuration management. A copy of the contents of the module
development folders shall be entered as a project record when the developer
has finished the implementation and developer test for that module. Any later
modifications to the contents of a mudule development folder shall be entered
as a project record at the successful completion of the operational readiness
review.

5.0 Confiquration Management
5.1 Configuration Management Plan

Configuration management (CM) is required for versions of the software and
documentation released to testing. A change request system for tracking
modification to CM versions of software and documentation must be implemented.
The CM system will also be used to track data files delivered to the code
development task from other tasks on HEDR. Both test and final versions of
these files will be maintained in CM.

A configuration management plan will be written to cover all aspects of
configuration management of the code, documentation, and associated data.
This plan will be initiated following the Technical Steering Panel (TSP)
meeting in early January, 1993. The current plan is to use a slight
modification of the procedure PNL-YMPO-SCP-3, "Software Configuration
Management" for controlling configuration management.

Configuration management of software items prior to creation and approval ~f
the CM plan may be limited to having signed, dated, versions of documentation
stored as project records.

5.2 CM of Documentation

Configuration management of software documentation is required. It is
anticipated that all documentation for the codes will be written in Word
Perfect 5.1 for a PC. The documentation could be developed and managed on a
PC server. A CM tool such as the software product PVCS could be used to track
versions of the software documentation.

5.3 CM of Source Code

Configuration management of the source code is required. CM of the source
code could be done on the HEDR Sun if desired, or the source code could be
offloaded to a PC server with the documentation.

5.4 CM of Executables and lLarge Data Files

Configuration management of executables and data files is required. An
automated CM tool for handling large ASCII or binary data files or code
executables may need to be purchased. It is anticipated that all large files
will reside on the HEDR Sun.

5.5 Chanae Control

A change control system will be developed and implemented. This system will
be initiated following the TSP meeting in early January, 1993. The current
plan is to use a slight modificatior of the procedure PNL-YMPO-SCP-4, "Change
Control" for controlling changes to the codes.

6.0 Documentation Required

Extensive documentation requirements are listed in the requirements
specification. However, these documents only have to be completed as drafts
by the end of the development effort - they can be published later.

Both DESCARTES and CIDER will require the documentation items outlined in the
subsections below. Pre-processors and post-processors developed by this
coding team will only require a User’s Guide and a module development folder.

Mathematical model descriptions have already been published as HEDR documents.
Documentation generated for this coding task will include the mathematical
models by reference.

6.1 Software Development Plan

A SDP (this document) shall be written to provide management control of the
remainder of the development work for each task.

6.2 Interface Requirements

The codes being developed require input in several forms from other HEDR
tasks. Interfaces to each of these data items will be specified and
documented. The interfaces between the two codes will also be formally
documented. This information will be published as appendices to the DESCARTES
and CIDER design documsnts.

6.3 Data Dictionary

A data dictionary will be developed for each code. The data dictionary will
provide a 1ink between the symbols in the mathematical equations and their
implementation in the code. Information such as variable name, variable type,
storage location, data units, and variable description will be included in the
data dictionary.

6.4 Software Design Documentation

Documents will be written describing the design of the DESCARTES and CIDER
codes. Requirements for the content of these documents are given in Exhibit
1.

6.5 Module Development Foldcrs

Module development folders; will be maintained for each module. They will
contain such information as the requirements (input, computational. and
output) for the wodule, a code listing, and documentation of developer test of
the module. Items contained in the module development folder need not be
typed, but must be legible and copier reproducible. Requirements for the
contents of the module development folders are given in Exhibit 5.

6.6 Verification Plans

Software Verification Plans (SVP’'s) will be written describing the tests to be
run to verify correct operation of the codes. Requirements for the contents
of the SVP’s are given in Exhibit 2. A draft of the SVP’s will be written by
the development team.

The independent test team shall have the freedom to add or delete tests and
will be responsible for finalizing the SVP’s. It is anticipated that the SVP
for Jeanne Simpson’s sensitivity code will provide the basis for many of the
tests needed for DESCARTES and CIDER.

Veriti ion Pr T

Specific verification tests for the codes will be run using documented test
procedures and cases. Requirements for the content of the test procedures and
cases are given in Exhibit 3.

6.8 User Manuals

The User’s Manual will contain discussions on: i) assumptions on running the
code, ii) generation of control data, iii) use of data files, and iv) system
requirements. The intent of this draft document will be to provide trained
HEDR staff with enough information to successfully run the environmental
pathways and dose codes. Requirements for the content of the User’s Manuals
are given in Exhibit 4.

In addition to user’s manuals for DESCARTES and CIDER, user instructions will

be developed for the pre-processors and post-processors necessary to input
data or analyze output data.

7.0 Software Life Cycle Model and Reguirements

Development of the DESCARTES and CIDER codes will be controlled through use of
PNL’s software control procedures. Documentation and review requirements for
the codes will be specified through application of SCP-70-312 "Determination
of Software Requirements". The software 1ife cycle model to be followed in
the development of DESCARTES and CIDER is outlined in this section, and
additional requirements are identified. The additional requirements are
underlined.

7.1 Development Planning

Thi P _serv iding do t 11 _subse d

activities. It documents the 1ife cycle appropriate to the activity,
designates the point at which the major pieces of documentation and source
code will be generated, reviewed, and baselined, and lists the formal reviews
to be performed.

Upon completion of the review and incorporation of any comments. the SDP is

approved and submitted to Confiquration Management (CM) as a baseline
document. All revisions to the baseline SDP require formal change requests.

7.2 Requirements Phase

The Requirements phase of the 1ife cycle documents the performance, design
constraints, attributes, functionality and the external interfaces of the
computer software. During this phase, the requirements that the software must
satisfy are defined and formally documerted in the SRS. The SRS is then
formally reviewed to the SOW and other specified requirements by independent
reviewers.

Upon completion of the review and incorporation of any comments. the SRS is
approved by the project manager and submitted to Configuration Management (CM)
as a baseline document. A1l revisions to the baseline SRS require formal
change requests.

1.3 Design Description Phase

During the design description phase of the 1ife cycle the software design is
established and documented in the Software Design Description (SDD). The SDD
specifies the overall structure of the code and the reduction of the model
into physical solutions, such as data flow and data control. The structure of
the models, data structure, component algorithms, assumptions, application,
location, and numerical stability of the models are identified. Input to the
Verification Plan and test cases is provided in this phase of the software
development. The content of the SDD is described in Exhibit 1.

Upon completion of a formal review and incorporation of any comments. the SDD

is _approv the project manager and submitted to a_baseline document.
All revisions to the baseline SDD require formal change requests.

7.4 Implementation Phase

During the Implementation phase the design is translated into code using a
programming language and inputs from the SDD. Code debugging is performed and
code walkthroughs are done to remove errors in the coding. The Software Users
Document (SUD) is initiated, and final input to the Software Verification Plan
and test cases is provided. Exhibit 4 gives requirements for the contents of
the SUD.

meuuﬂmmtmmu_mmmmmmumﬂ
shall contain design information and documen

A&J.Qn_ef_dﬂg_qns.t_mz_ug.,_
Exhibit 5 gives requirements g the contents of the module development
folder.
ro 11 be perfoimed when the implementation phase is

0% lete for each of the DESCARTES and CIDER codes. The

approximately #0% comp!
gglkth;gggh reviewers shall use the checklist PNL-HEDR-CHK-COD in theijr
review.

(.5 Final Internal Development Review

At the conclusion of the implementation phase, the code and its documentation
shall be subjected to a Final Internal Development Review per SCP-70-313.

tems al vi e incor ed i eview by ref

7.6 in d Installation Ph

Three types of testing are covered in this section: Module Testing,
Integration Testing, and Independent Testing. An operational readiness review

shall be conducted by project management at the completion of all the tests
per SCP-70-315.

7.6.1 Module Testing
Program modules shall be tested in accordance with the approved Software
Verification Plan (SVP) and the Test Procedures and Cases to assure functional

requirements have been met. Documented module tests from the module
development folders can be used to satisfy this requirement.

7.6.2 Integration Testing

During Integratlon Testing, the program elements are integrated and tested
together in accordance with the approved SVP and the Test Procedures and Cases

10

to assure funciional and interface requirements have been met. The
Integration testing shall be performed by the development team.

7.6.3 Independent Team Testing

The software is then installed in its operational environment and tested to
ensure that it performs as required. The testing is performed in accordance
with the approved SVP and the Test Procedures and Cases. The tests shall be
run by an independent test team. The test team members shall be chosen by the
project manager. They cannot have been involved in the implementation
(coding) of the code they are testing.

um f t in ncl r evaluation of t
results against the SVP, shall be accomplished prior to proceeding to the
operational readiness review.

7.7 Operation and Maintenance Phrase

During the Operation and Maintenance Phase, the software is placed in its
operational environment and monitored for satisfactory performance. As
appropriate, the software is modified to correct errors, or to accommodate
changing client, user or internal roquirements.

Revisions to the software in the operatio intena hase requi
formal change request. .

7.8 Development of Documentation

The Software Verification Plan (SVP), Test Procedures and Cases, and User
documents must be written during the development 1ifecycle of the computer
code. The following sections describe when these documents should be
initiated and completed.

71.8.1 Verification Plan Development

The SVP shall be initiated by the Lead Developer in the Requirements phase of
the software life cycle. The final SVP will address the requirements
specified in Exhibit 2 with input from the SRS, SDP and the SDD. The
independent test team may contribute additional tests to the SVP prior to
formal review. The SVP shall be subjected to a formal review. It shall be
completed prior to the start of the independent testing.

Upon_completion of the review and incorporation of any comments, the SVP is
approved by the project manager and submitted to CM as a baseline document.

7.8.2 Test Procedures and Test Cases
FolTowing the approval of the SVP, Test Procedures and Cases are developed by

the Lead Developer with input from the Test Team Leader, containing the
elements given in Exhibit 3.

11

Upon completion, the Test Procedures and Cases are approved by the Project
Manager and submitted to the CM Coordinator for control as a baseline.

as a

7.8.3 User Documentation

The Software User Document (SUD) shall be initiated during the Implementation
Phase by the Lead Developer to address the requirements specified in Exhibit
4, with input from the Code listing, SRS, SDP, and SDD. The SUD is reviewed
and exercised during the Test phase for correctness, functionality and other
specified requirements by independent reviewers.

12

8.0 Activities, Deliverables and Schedules

This section addresses activities, schedules and deliverables for the code
development effort. Since the budget has not been finalized, the following
dates are to be considered as target, rather than firm, dates. Firm dates can
only be established after the budget has been finalized.

8.1 Deliverables
The software related deliverables for the task are divided into two areas of

responsibility, one for the code development team, and the other for other
HEDR tasks

vel ivera

The deliverables for the development team and the responsible authors are as
follows:

Author | Document |

Eslinger | 12/10/92 | Software Development Plan
Eslinger 1/12/93 | Software Requirements Specification

Esiinger 2/15/%3 | Configuration Management Plan
Eslinger | 12/18/92 | CIDER Benchmarking Report
Eslinger | 12,18/92 | DESCARTES Benchmarking Report
Nichols 1/30/93 | DESCARTES Software Design Description
Ouderkirk | 1/30/93 | CIDER Software Design Description
Nichols 1/30/93 | DESCARTES Interface Specification
Ouderkirk | 1/30/93 | CIDER Interface Specification
Nichols 2/15/93 | DESCARTES Data Dictionary
Ouderkirk | 2/15/93 | CIDER Data Dictionary
Miley 4/15/93 | DESCARTES User's Guide
OQuderkirk 5/1/93 CIDER User’s Guide
Eslinger 4/1/93 Draft DESCARTES Verification Plan
Eslinger 4/15/93 | Draft CIDER Verification Plan
Nichols 4/15/93 | DESCARTES code listing
|_Ouderkirk 5/1;22=== CIDER code 1isting

13

8.1.2

her HEDR Deliverables

Related deliverables that are the responsibility of other HEDR tasks include:

HEDR Data Management Plan

Final Software Verification Plan
Final Software Test Procedures

(SVP)
(STP)

Review Reports (Final Internal Development Review [FIDR])
Review Reports (Independent Testing)
Review Reports (Operational Readiness)

Person Date Activity
General Items
Shoemaker 11/9/92 ! Finish draft Software Requirements Specification (SRS)
Eslinger 1/12/93 | Baseline the Software Requirements Specification (SRS)
Eslinger 12/10/92 | Specify the benchmarking tests to be performed
Esiinger 12/10/92 | Finish the Software Development Plan (SOP)
* 1/8/93 TSP review of the development effort
Eslinger 1/12/93 | Initiate Configuration Management Plun
Eslinger 3/1/93 Implement Confiquration Management plan
DESCARTES-Related Items
Eslinger 12/18/92 | Finish the benchmarking tests for DESCARTES
Nichols 1/30/93 Design complete for DESCARTES
* 2/10/93 | Final Software Design Review for DESCARTES]
Nichols 2/15/93 Baseline Software Design (including Data Dictionary and Interface
Specifications) for DESCARTES
--- 2/16/93 | Begin implementation of DESCARTES
Miley 2/16/93 Begin DESCARTES User’s Guide
Eslinger 2/16/93 | Begin Software Verification Plan (SVP) for DESCARTES
* 3/25/93 | Perform DESCARTES walkthrough
Eslinger 4/1/93 Finish draft software verification plan (SVP) for DESCARTES
* 4/15/93 | Baseline software verification plan (SVP) for DESCARTES
Miley 4/15/93 | Finish User’s guide for DESCARTES
* 4/15/93 Finish verification procedures and cases for DESCARTES
* 4/15/93 Final Independent Development Review (FIDR) for DESCARTES

14

* Activity performed by persons or organizations other that the software

development team.

15

e oz
Person Date Activity
Nichols 4/15/93 | Baseline the DESCARTES code
* 4/16/93 Start independent testing of DESCARTES
Miley 5/30/93 | Baseline User’'s Guide for DESCARTES
* 5/30/93 | Perform operational readiness review for DESCARTES
CIDER-Related Items “
Eslinger 12/3/92 Finish the benchmarking tests for CIDER
n“ Ouderkirk | 1/30/93 ! Design complete for CIDER
* _2/10/93 | Final Software Design Review for CIDER
Ouderkirk | 2/15/93 | Baseline Software Design (including Data Dictionary and Interface “
Specifications) for CIDER
o= 2/16/93 | Begin implementation of CIDER “
Ouderkirk 2/16/93 Begin CIDER User’s Guide
Eslinger 2/16/93 Begin Software Verification Plan (SVP) for CIDER
* 3/25/93 | Perform CIDER walkthrough
Eslinger 4/15/93 Finish draft software verification plan (SVP) for CIDER
* . 5/1/93 Baseline software verification plan for CIDER
| ouderkirk 5/1/93 Finish User’s guide for CIDER
r“’ * 5/1/93 Finish verification procedures and cases for CIDER
Ouderkirk 5/1/93 Baseline the CIDER code
* 5/1/93 Final Independent Development Review (FIDR) for CIDER
* 5/1/93 Start independent testing of CIDER “
Quderkirk | 5/30/93 | Baseline User’'s Guide for CIDER
* 5/30/93 | Perform operational readiness review for CIDER

9.0 List of Abbreviations

The following abbreviations are used in this document:

coc
CM
FIDR
HEDR
MDF
SDD
SDP
SOwW
SRS
STP
SUD
SVP
TSP

Centers for Disease Control
Configuration management

Final internal development review
Hanford Environmental Dose Reconstruction
Module development folder

Software design description
Software development plan

Statement of work

Software requirements spec.f1cat1on
Software test procedures

Software user document

Software verification plan
Technical Steering Panel

16

Exhibit 1: Software Design Description Content

The software design shall be described in a manner that is easily traceable to
the computer software requirements. The format may be modified so long as the
required content is addressed. Justification must be provided for those
portions of the content deemed to be not applicable to the specific activity.

Stardard Heading

Project: Hanford Environmental Dose-Reconstruction Project
Program:

Title of Document:

Configuration Item ID No.:

Table of Contents

~ Include page numbers and titles for each numbered section, and all figures,
tables, and appendices.

1. Relationship to Requirements.

Provide a description of the major components of the computer software design
as they relate to the requirements in the computer software requirements
specification. Show how each requirement for the code will be met in the
design. Document, using a table, matrix or other structure, where each
functional requirement for the code will be met.

2. Mathematical Model & Numerical Methods.

Provide descriptions of mathematical models and numerical methods. This

section of the design description provides a complete explanation of the

methods used. As described below, it shall include a derivation of and

{ustification for the model and will clearly explain its capabilities and
imitations.

The discussions of mathematical models and of numerical methods may be
separated into different sections provided they are adequately cross-
referenced.

a. Mathematical Model Derivation. Derive from first principles the
mathematical model. Justify each step in the derivation and note how
assumptions and limitations are introduced. It is acceptable to provide
references to published material containing a derivation in lieu of a new
derivation.

b. General numerical procedure. Describe the numerical solution strategy
and computational sequence. Use flowcharts and block diagrams. Give

17

-

C.

3.

references for the basic numerical procedure. Show how the numerical
strategy is related to the mathematical strategy (e.g., how the boundary
conditions are introduced).

Numerical method type. Characterize any numerical method used in the
model which goes beyond simple algebra (e.g., finite-difference,
Simpson’s rule, cubic splines). Derive the numerical procedure from the
mathematical component model. Give references for all numerical methods.
Give the final form of the numerical model and explain the algorithm.
State what variables are input to and output from the component model.

i abili racy. Discuss the stability and accuracy of
the numerical model. Distinguish between those aspects of stability and
accuracy which have been proven mathematically and those which have been
observed in practice.

ftware Structure.

Provide a technical description of the computer software with respect to
control logic, data flow, and data structures. Describe briefly the role of
each component model within the overall structure of the code. Show how each
component model contributes to the overall solution of the problem.

For each component model, provide the following:

a.

b.

CC

d.

4.

Purpose. Describe the purpose and scope of the component model. State
in general terms the input to and the output from the model and the way
the information is processed. If the model is used only in certain
cases, state under what circumstances it is used.

Assumptions and Limitations. Describe the assumptions and limitations of
the component model. Include the known ranges of validity of the model

fog ?11 variables. State any known uncertainty about the validity of the
model.

Notation. Identify all algebraic variables used in equations. Give the
mathematical symbols used in both the fundamental equations and their
equivalents in the numerical formulation.

Application. Discuss the applicability of the component model for its
intended use. Point out any extrapolation of the model or use out-of-
range. Describe any restrictions on the use of the model. State whether
thedva1idity of the model will be affected by unusual or extreme
conditions.

Data Descriptions

Provide a description of the allowable and tolerable ranges for inputs and
outputs.

18

a. Control Inputs. Discuss the general approach used to enter all control
information to the code. Describe in detail all input control values.

b. Data Inputs. Discuss the general approach for entering data into the
code. Describe the content and format of all input data files.

c. Outputs. Describe the content and format of all output files. Discuss
the size of the data files under different program options.

5. Experience.

Discuss the overall performance of the entire model. Note the conditions
under which the model is expected to yield good or bad results. Point out
specific component models known to perform poorly under certain circumstances.
Give any general rules or recommendations to follow in use of the models.

Signatures:
Approval: Project Manager

Concur: Quality Engineer
Author : Lead Developer

19

Exhibit 2: Software Verification Plan Content

This exhibit establishes the required content for the Software Verification
Plan. The format may be modified so long as the required content is
addressed. Justification must be provided for those portions of the content
deemed to be not applicable to the specific activity.

Standard Heading

Project: Hanford Environmental Dose Reconstruction Project
Program: . ‘

Title of Document:

Item ID No.:

Table of Contents

Include page numbers and titles for each numbered section, and all figures,
tables, and appendices.

1.0 Scope

Identify the system or project and items to which this SVP applies and state
the purpose of the SVP.

2.0 Verification Tasks

Specify the verification activities required by the Software Development Plan,
e.g. Software Requirements Review, Software Design Review, and Test Phase
Activities. Describe the methods (e.g., inspection, analysis, demonstrations,
and tests) to be used in performing the verification activities and the
acceptance criteria to evaluate the results of the verification tasks.
Identify specific tools and techniques that may be required for the
performance of the verification tasks.

3.0 Resources

Identify the resources for the performance of each verification task.
Classify resources in categories such as staffing, training, equipment,
facilities, etc. If specific tools are required for the performance of
verification tasks, specify the source of these tools and their availability.

4.0 Test Documentation

Describe all test procedure(s) and related test case specifications.

5.0 Verification Matrix

Describe through use of a matrix or similar method how each of the
requirements in the SRS will be verified and how the code will be validated

through performance of the planned V&V activities, i.e., for each requirement,
cross reference to the associated test case(s) or validation activity.

20

6.0 Verification Schedule

Develop a timetable or schedule indicating the projected date for completion
of the software verification activity.

7.0 Hardware Requirements

Identify the specific hardvare configuration ard software environment (i.e.

operating system, compiler, linker) under which the Validation activities
shall be performed.

Signatures:
Approval: Project Manager
Concur: Quality Engineer
Author: Lead Developer

21

Exhibit 3: Test Procedure and Cases Content

This exhibit establishes the required content for the Test Procedures and
related Test Case Specifications. The format may be modified so long as the
required content is addressed. Provide justification for those portions of
the required content deemed to be not applicable to the specific activity.

Standard Headin

Project: Hanford Environmental Dose Reconstruction Project
rrogram:

Title of Document:

Item ID No.:

Table Content

Include page numbers and titles for each numbered section, and all figures,
tables, and appendices.

1.0 Introduction

Summarize the features that are to be tested. State whether the subject
testing is unit/integration or installation testina.

2.0 Scope

Identify the test items including their version/revision level. Identify all
features to be tested including the test case specifications associated with
each feature. (Test Case Specifications will be Section 8.0 of the Test
Procedure Document, or optionally, the Test Case Specifications may be
separate documents with separate configuration management control
identification numbers.) Identify all items and features that are to be
excluded from the testing, state reasons for exclusion. Identify special
requirements necessary for the execution of this procedure.

3.0 Approach

Describe the approach to testing to ensure adequate testing of all features.
Identify major testing tasks and the time required to perform each of these
tasks. Identify activities, techniques and tools necessary to prepare for and
perform testing. Identify test item pass/fail criteria, suspension/resumption
criteria, and test deliverables.

4.0 Resources

Identify the physical characteristics of test facilities and software or
supplies or special test tools that may be needed. Specify the level of
security that must be provided and the source for all needs that are not
currently available to the test group. Identify the personnel responsible for
managing, designing, preparing, executing, witnessing, checking and resolving

22

tests. Specify test staffing needs, ard identify training options for
providing necessary skills.

5.0 Schedule

Specify the schedule for each testing task and test milestone. Specify the
period of use for each testing resource.

6.0 Assumptions and Risks

Identify assumptions and associated risks. Specify the names and titles of
all personnel who shall approve the test procedure.

7.0 Procedure Steps

Describe the sequence of actions necessary for preparation before execution,
beginning of execution, and during execution of the procedure. Describe
methods or formats for logging the results of test execution and test
incidents. Describe how test measurements will be made. Describe the
sequence of actions necessary for shutdown, restart, execution halt and
restoration of the hardware/software environment. Describe the actions
necessary for dealing with anomalies that may occur during execution.

8.0 Test Cases

Document each test case specification separately and include the following
content for each.

a. Introduction. Specify the unique identifier assigned to the test
case specification. Identify and briefly describe the items and
features to be exercised by the test case. Provide the rationale for

selection of the test case. Specify pass/fail criteria for all the
features to be tested.

b. Input/Output Specifications. Specify all inputs and relationships
among inputs required to execute the test case. Specify all outputs
and features required of the test items.

c. Requirements/Resources. Specify the characteristics and
configurations of any hardware or software or unique facility
required to execute the test case. Describe any constraints on the
test procedure that executes the test case. Summarize the nature of
intercase dependencies.

Signatures:
Approval: Project Manager

Concur: Quality Engineer
Author: Lead Developer

23

Exhibit 4: Software User Documentation Content

This exhibit establishes the required content for the User Documentation. The
format may be modified so long as the required content is addressed.
Justification must be provided for those portions of the content deemed to be
not applicabie to the specific activity.

The User’s Documentation, in combination with the Software Source Code, will
provide sufficient information for the user to set up and run problems as well
as resolve possible difficulties. If any of the information described below

is documented in the code, the lines in which the information may be found may
simply be referenced.

1.0 Standard Heading

Project: Hanford Environmental Dose Reconstruction Project
Program:

Title of Document:
Item ID No.:

2.0 Table of Contents

Include page numbers and titles for each numbered section, and all figures,
tables, and appendices.

3.0 Program Considerations

3.1 Program options - Discuss the function of each major program option;
give special attention to effects of combinations of options. Relate
options to the input values which control them.

3.2 Program paths - Describe the purpose of each subroutine. Use
flowcharts and block diagrams to explain the paths the program can
take. If parts of the code are executed only under certain
conditions, state those conditions. Show how the computational
sequence and solution strategy described in the Software Design
Description are related to the program flow.

3.3 Pata structures - Discuss how data are stored during computation.
Describe the purpose and content of important common blocks and
arrays. State the array dimensions. If dynamic dimensioning is
used, describe the indexing algorithm. This section, together with a
code listing, shall be sufficient to allow the user to follow the
flow of important data through the computational sequence.

3.4 Initialization - Provide any values automatically assigned to

important variables. These shall include values of physical
significance and parameters which affect program execution. State

24

where the values are initialized and whether they are default or
fixed values.

3.5 Restart procedures - Describe any restart capabilities of the code
and how they are used.

3.6 Error processing - Describe the points of origin and likely causes of
all major error messages, error switches, and abnormal stops.

4.0 Data Files - Internal & External

4.1 Content - Outline the general content, purpose, structure, units,
ranges, and organization of each data file.

4.2 Use by program - Describe how and when the files are read and written
by the program.

4.3 Auxjliary processing - Describe any available auxiliary programs
which create, modify, or use the files.

5.0 Input Data
5.1 General considerations
a. Techniques - Describe special input techniques and requirements,

e.g., blank field treatment, order of items, field delineation,
handling of stochastic parameters.

b. Consecutive cases - If the code is able to retain input data from
previous cases, give conditions for retention and reinitialization.

c. Defaults - Give the general conventions governing default values.

5.2 Individual input records

a. Record identifier - Give the line identifier, if any, for this type
of record.

b. Input variables - State the code variables which will contain data
given on this record.

c. Format - Specify the format of this record, if any.

d. Need - For each variable, specify whether input is necessary or

optional for both start and restart runs.

e. Repetition - State how many of these input records are required or
may be used optionally.

f. Units - For each input field, state the dimensional units.

25

Default - State any default values for each field.

Description - Define the meaning of each variable and discuss its
primary use within the code. State how the user will assign values
in setting up a run.

Range - State the acceptable limits for each variable necessary for
successful operation of the model in the programming sense.

6.0 System Interface

6.1

6.2

6.3

6.4

- List the external references in the
program which must be supplied by the system, and state the purpose
of each. Include plot and mathematical libraries, but omit standard
programming language intrinsic functions.

- Specify what compilers have been used and any
special load options that are necessary. Include compiler options,
such as indirect large core memory addressing.

Hardware requirements - Doscribe any special features needed. State
the amount of central memc+y required for a typical case, or give an
algorithm for determining . . ~quired amount of memory.

Command files - A1l computer codes require some system commands to
control program initiation, manipulation of files, and interaction
with other programs. Describe the command files necessary to run the
code as part of a modeling analysis. The appropriate level of detail
will depend on the degree to which command files contain logic
affecting program flow, manipulation of files, and communication
among programs. Give sample command files. Discuss application
dependence.

7.0 Qutput

Discuss the code output. Relate edited output to input options, and state the
origin and meaning of the output variables. Describe any normalization of
results and list associated dimensional units. Describe any graphical
capabilities of the code.

8.0 Sample Problems

Choose a few probiems which demonstrate how the code is used. These problems
need not have known solutions or experimental data. However, they shall
exercise a large portion of the available programmed options, but should use
only a reasonable amount of computer time. Input deck listings and sample
output should be given and explained.

26

9.0 Reporting Problems

Give information for obtaining user and maintenance support.

Signatures:
Approvali Project Manager

Concur: Quality Engineer
Author: Lead Developer

27

Exhibit 5: Module Development Folder Content

This exhibit establishes the required content for the Module Development
Folders (MDF). The format may modified so long as the required content is
addressed. The MDF is considered a working document. Entries in the MDF are
not required to be typed or peer reviewed as they are entered. However, each
item must be legible and capable of reproduction.

The MDF will provide sufficient information to meet the following criteria:
i) allow another developer to finish a partially implemented moduie in
the absence of the original developer, and
ii) provide documentation of developer tests.

1.0 Standard Heading

Project: Hanford Environmental Dose Reconstruction Project
Program:

Title of Module:

Item ID No.:

2.0 Table of Contents

Include page numbers and titles for items entered.

3.0 Design Information

Include items such as:

+ description of the algorithm
data flow diagrams
description of inputs, including storage location and units
description of outputs, including storage locations and units
tradeoffs made in choosing between implementation options
Jjustification and description of extensions to language standards

4.0 Developer Test Information

Module level tests will be reviewed during the FIDR to evaluate readiness of
the code to proceed to independent testing. In addition, they may be used by
the independent test team during their evaluation of the code.

Include such items as:

+ description of the test

« results of hand calculations
« test results

complete enough description of inputs and outputs so the test can be
rerun

28

The
Ite
wit
but

1.

*

*

2.

*
*

v

PNL -HEDR-CHK-COD

Exhibit 6: Code Walkthrough Review Checklist

following items shall be considered in the review of the code listing.
ms marked with a "*" identify information that is required. Items marked
ha"" identify information that will enhance the quality of the product,

are not required.
SDP_and SOD Requirements
Are all of the software functional requirements in the SDD addressed?
Does the code adhere to the coding standards and conventions required in
the SDP? :
Is the code written in the language specified in the SDP?
Does the code contain identification and configuration management
numbers? Are these numbers written to all applicable output files?
Developer Test and Inspection

Has the developer performed tests to remove coding errors?
Has the developer performed inspections
Has each module or subroutine been unit tested?

Has each routine been checked for a range of variables?

- Has each routine been tested for every logic path within the routine?

Have debug statements been incorporated and used to print variables for
checking?

3. Data Reference Considerations

Are there variables referenced whose values are not set or uninitialized?

For all array references, is each subscript value within the bounds of
the corresponding dimension statement definition?

For all array references, does each subscript have an integer value?
(Not necessarily a defect in all languages.)

- For all references to storage arrays through pointers or intermediate

reference variables, is the referenced storage currently allocated?

29

PNL-HEDR-CHK-COD

When a storage area has alias names with differing attributes (such as
EQUIVALENCE’d INTEGER and REAL arrays), does the data value in this area
have the correct attributes when referenced via one of these names?
(Aliasing is a poor practice and should be avoided.)

Does a variable’s value have a type or attribute other than that expected
by the program when used?

Are there any explicit or implicit addressing problems on the machine
being used, for instance, if the units of storage allocation are smaller
(e.g., bits) than the units of storage addressability (e.g., bytes or
words)? '

If a data structure (e.g., array) is referenced in multiple procedures or
subroutines, is the structure defined identically in each procedure?

When indexing into a string, are the limits of the string exceeded?

Are there any "off by one" errors in indexing operations or in subscript
references to arrays?

Is the format of the data being read from each file consistent with that
of the data being written to that file?

. Are the number and type of variables being read consistent with that
written?

Are all values properly stored after they are calculated?

If a queue is being manipulated, can the execution be interrupted; if so,
is the queue protected by a locking structure?

Can a queue be destroyed during an interrupt procedure?

Are all registers being restored on exits from the interrupt procedure?
Should any registers be saved on entry to the interrupt procedure?
Check that measures specified to provide consistency in real-time and
concurrent programs are actually employed on shared resources in the
prescribed way.

- Are parameters used in the program dimensionally correct, and invoked in
proper calling sequences?

Is scaling everywhere proper to realize correct precision and desired
results?

30

PNL-HEDR-CHK-COD

4. Data Declaration Considerations

« Have all variables in the program been explicitly declared? (A failure
to do so is not necessarily an error, but it is a common source of
trouble.)

« If all attributes of a variable are not explicitly stated in the
declaration statements, are the defaults well understood?

+ Where a variable is initialized in declaration (DATA) statement, is it
properly initialized?

- Is the initialization of a variable consistent with its storage type and
use?

« Are there any variables with similar names (e.g., VOLT and VOLTS)? (This
is not necessarily a defect, but the names may be confused.)

- Are all variables properly specified and used?

+ Are there any unused variables?

+ Are dimensions and subscripts consistent with the array bounds?
« Are proper units used with each variable?

« Are labeled common variable names, type, location and size of arrays
consistent throughout the program?

« Are all constants defined as parameters?
« If character strings are created, are they complete?
+ Is the data base structure as implemented self-consistent and
hierarchically arranged?
5. Computation Consideratio
+ Are there any computations using variables having inconsistent attributes
or data types. (This kind of programming will inevitably lead to
portability problems.)
"« Are there any mixed-mode computations? (e.g., an example is the addition
of a floating-point variable to an integer variable. Not necessarily a
defect, but will lead to portability problems.)

+ Are there any computations using variables having the same data type but
different bit lengths?

31

PNL-HEDR-CHK-COD

« Is the maximum permitted size of the target variable in an assignment
statement smaller than the right-hand expression?

« Is an intermediate overflow or underflow possible during the computation
of an expression?

« Is it possible for the divisor in a division operation to be zero?

« If the underlying machine represents variables in a base-2 format, are
there any consequences of the resulting inaccuracy of decimal fraction
representation?

+ Where applicable, can the value of a variable go outside its meaningful
or physical range?

« For expressions containing more than one operator, are the assumptions
about the order of evaluation and precedence of operators correct?

« Are there any invalid uses of integer arithmetic, particularly division?
- Are the various calculations and tasks defined properly?

« Are mixed mode expressions clearly identified to eliminate unintentional
mixed mode errors?

« Are results of calculations checked to be reasonable values within the
design specification?

+ Does code produce correct output for prescribed inputs?
- Are the arithmetic results correct for nominal conditions?
+ Are the minimum and maximum inputs processed correctly?
« Are singularities and other conditional occurrences of data processed
correctly?
6. Comparison Considerations

« Are there any comparisons between variables having inconsistent data
types (e.g., comparing a real variable to a Hollerith string)?

« Are there any mixed-mode comparisons or comparisons between variables of
different lengths? If so, ensure that the conversion rules are well
understood.

+ Are the comparison operators correct? (Especially such relationships as:
at most, at least, greater than, not less than, less than or equal.)

32

PNL -HEDR-CHK-COD

- Does each Boolean expression state what it is supposed to state?
« Are the operands of Boolean operator logical variables?

« Are there any comparisons between fractional or floating point numbers
that are represented in base-2 by the underlying machine? (This is an
occasional source of errors because of the truncation and base-2
approximations of base-10 numbers.)

+ For expressions containing more than one Boolean operator, are the
assumptions about the order of evaluation and the precedence of operators
correct? (Parentheses should always be liberally used.)

« Does the way in which the compiler evaluates Boolean expressions affect
the program? For instance, the statement "IF ((X.NE.O.) .AND.
(Y/X.GT.Z))" is acceptable for some Fortran compilers (i.e., compilers
that end the test as soon as one side of an .AND. is false), but causes a
division by zero when compiled with other compilers which do not.

« Is the correct condition of the expression tested (e.g., IF(X.EQ.TRUE)
versus IF(Y.EQ.FALSE))?

« Are null THEN’s/ELSE’s included as appropriate?
- Is each branch of the target of IF/THEN's correct?

Is the most frequently exercised test leg the THEN clause?

. Control Flow Considerations

« If the program contains a multi-way branch (e.g., a computed GO TO in
Fortran), can the indexed variable ever exceed the number of branch
possibilities? Will every loop eventually terminate?

« Will the program, module, or subroutine eventually terminate?

- Is it possible that, because of the conditions upon entry, a loop will
never execute? If so, does this represent an oversight?

. For a loop controlled by both iteration and a Boolean condition (e.g., a
searching loop), what are the consequences of "loop fall-through"?

« Are there any "off by one" errors (e.g., one to many or too few
iterations)?

« Are there any nonexhaustive decisions? (For instance, if an input

parameter’s expected values are 1,2, or 3, does the logic assume that it
must be 3 if it is not 1 or 2?) If so, is the assumption valid?

33

PNL-HEDR-CHK-COD

Is the logic clearly understandable?

« Is the logical approach valid?

Is the logical approach unnecessarily complex or confusing?

« Is the program properly segmented?

Are subroutine calls properly formulated?

Have all error conditions been properly processed?

Are timing and resource allocations properly mechanized?

s task sequencing proper to mechanize the function in correct execution
order?

Are all increment counters properly initialized?

nte e Consideratio

« Does the number of parameters received by a module equal the number of
arguments sent by each of the calling modules? Is the order correct?

Do the attributes (e.g., type and size) of each parameter in the calling
routine match the attributes of each corresponding argument in the
subroutine?

+ Does the number of arguments transmitted by this module to another module
equal the number of parameters expected by that module?

- Does the units system of each argument transmitted to another module
match the units system of the corresponding parameter in that module?

« If built-in functions are invoked, are the number, attributes, and order
of the arguments correct?

- If a module has multiple entry points, is a parameter ever referenced
that is not associated with the current point of entry? (Multiple
entries should in general be avoided.)

+ Does a subroutine alter a parameter that is intended to be only an input
value? :

- If global variables are present (e.g.: variables listed in Fortran COMMON
statements), do they have the same definition and attributes? (Not
necessarily a defect, but a poor programming practice.)

34

PNL-HEDR-CHK-COD
- Are constants ever passed as arguments? (Not necessarily a defect, but a
poor programming practice.)
« Do all calls to a routine transfer consistent data variables?

. Are the number of variables and the type of each variable the same in
both the calling and called routine?

« Are all the required parameters passed correctly?

« If register parameters are used, is the correct register number
specified?

« If interconnection is a macro, does the in-line expansion contain all
required code?

« Are there register or storage conflicts between macro and calling
modules?

- If the interconnection returns, do all returned parameters get processed
correctly?

+ Are the interfaces between routines, and to exterha] deviceé, well
designed and described?

. INPUT/OUTPUT Considerations
« If files are explicitly declared, are their attributes correct?
« Are the attributes on the file OPEN statement correct?

- Does the format specification agree with the information in the I/0
statement?

- Is the size of the I/0 area in storage greater than or equal to the
record size?

« Have all files been opened before use?
+ Are end-of-file conditions detected and handled correctly?
« Are I/0 error conditions handled correctly?

+ Are there spelling or grammatical errors in any text that is printed or
displayed by the program?

- Are data input and output variables defined correctly?

+ Are the reading and writing of I/0 files clearly defined?

35

10.

11.

PNL-HEDR-CHK-COD

« Is there satisfactory input error checking?

Are external data files checked to assure that the correct data file is
being read and the data is in proper format?

Is invalid input considered and handled?
Are all unique values explicitly tested on input parameters?

Are all defaults explicitly checked on input parameters?

Other Checks

If the compiler produces a cross-reference listing of identifiers, has it
been examined for variables that are never referenced or referenced only
once?

If the compiler produces an attribute listing, have the attributes of
each variable been checked to ensure that no unexpected default
attributes have been assigned.

If the program compiled successfully,.but the compiler produced one or
more "warning" or "informational" messages, have they been examined?
Warning messages are indications that the compiler suspects that you are
doing something of questionable validity.

Are there functions missing from the program?

Are there any syntax errors?

Are there compiler diagnostics or errors?

Is the source code concise and does it generate efficient, relocatable
machine code?

Internal Documentation Consideration

A software product is self descriptive to the extent that it contains enough
information for a reader to determine or verify its objectives, assumptions,
constraints, inputs, outputs, components, and revision status.

- Does each program module contain a header block of comments which

describes: (1) program name, (2) effective date, (3) accuracy
requirements, (4) purpose, (5) limitations and restrictions, (6)
modification history, (7) inputs and outputs, (8) computational methods,
(9) major assumptions, (10) error recovery procedures for all foreseeable
error exits that exist?

36

PNL-HEDR-CHK-COD

- Are decision points and subsequent branching alternatives adequately
described?

Are the functions of the modules as well as inputs/outputs defined
adequately enough to allow module testing?

Are the comments provided to support selection of specific input values
to permit performance of specialized program testing?

Is information provided to support assessment of the impact of a change
in other portions of the program?

Is information provided to support identification of program code which
must be modified to effect a required change?

Where there is a module dependence, is it clearly specified by comments,
program documentation, or inherent program structure?

Are variable names descriptive of the physical or functional property
represented?

Are adequate descriptions provided to allow correlation of variable names
with the physical property or entity which they represent?

Do ‘uniquely recognizable functions contain adequate descriptive
information (e.g., comments) so that the purpose of each is clear?

Are sufficient comment statements provided to give adequate definition of
each routine?

Are special coding features such as mixed mode, word packing and non-ANSI
coding clearly identified?

+ Is the program easily readable and understandable?
Are names contextually understandable and useful?
Are any additional comments needed?

Are there superfluous comments?

Are all assumptions clearly stated?

Are the source code and its descriptions self-consistent and uniform?

37

12.

*

PNL-HEDR-CHK-COD

TANDAR R Rl NVENTION nsideration

Have the programming constraints or requirements set forth in the SRS, or
SOD been met, such as:

a. Programming language(s) used,
b. Use of existing capabilities,
c. Compile-unit modularization,
d. Reentrance considerations?

Have that any project-specific standards identified in the SRS, SDP, and
SDD been verified, such as:
a. Register names, usage standards,
b. Module-to-submodule 1inking methods,
c. Definition of compiler parameters, literals, internal program
labels, and special storage structures?

Have any functions been omitted, or have any extra functions been
inserted, except as necessary coding considerations to support the given
design?

Is the software coded in accordance with the Software Requirements
Specification (SRS)?

Does the coding conform to ANSI standard coding language?
Does the coding conform to company pricedures?
Are standard indentation rules followed?

Are standard constructs implemented properly (e.g. CASE)?

- Is the documentation of the code complete, descriptive, consistent, and

conform to applicable standards?
Does the software show modularity and simplicity?

Is the source code maintainable, usable and reliable, in terms of:
- structure,

consistency,

expandability/modifiability

testability,

device independence,

self-contained,

robustness/integrity,

accessibility?

L] L ' [L L ¢

- Is the software consistent internally anc vith earlier baselines?

- Is the coding logically consistent with the design specifications?
- Does error detection result in consistent error messages and
recovery?

38

PNL-HEDR-CHK-COD

- Does the code take the same modular form as the design, except as
provided for in special programming standards or waivers?

+ Are coded modules properly cross-referenced to the designand annotated
so as to make clear that the code deces, in fact, match the design, box
for box, on the structure chart (or equivalent)?

+ Inspect the explanatory documentation provided in support of bridging the
design to the code, such as:

- F0 HhO Q. O

.

Cross-reference lists charts, or equivalent.

Index-register usage tables or standards.

Glossary of special variables or literals not in the design and
not easily defined by name or use context.

.Mcmory use map.

Timing diagrams.

Interrupt-handling procedures and relationships.

File, table, and data set descriptions.

Examples of input and associated output.

Listing of special flags, pointers and other indicators together

with the usage (which routines, areas or times of applicability).

Commentary describing features of code that 1link performance to

design documents.

Lists of error conditions, codes, and messages, cross-referenced

to both the design charts and the code itself.

Restrictions on the use of code that is particularly sensitive to

changes in design (mainly time and memory space, but also

functional limits to subroutines, etc.).

ga%a usage, such as shared public files versus restricted-access
iles.

Hardwa.'e or software constraints.

Use of privileged instructions?

39

" DATE
" FILMED

-3 1221 93

