
_, BN-SA-3667HEDR

HanfordEnvironmentalDose
ReconstructionProject

Pre-Decisional Draft

BN-SA--3667-HE[R

DE93 006345
SoftwareDevelopmentPlan

for

Approve:
Dil Shipler, HEDR ProjectManager .!,:: _-,

, _,_'_, _:;,. • . ,, : ._

.%,
Oi,,_TI_IidU]|ON ¢Jl- i _-iiS L_i,.ji,,,iEi_iT iG L.ii_iLiiviiTE_'_

Table of Contents

1.0 Introduction 1
1.1 Purpose _ 1
1.2 Background 1
1.3 ApplicableSoftwareRequirements I
1.4 Descriptionof the Codes I

1.4.1 DESCARTES I
1.4.1! CIDER I

2.0 Staffing and Budget 2
2.1 Code DevelopmentTeam" 2

Managemen"t "2.2 Configuration 2
2.3 Quality Assurance 2
2.4 Budget 2

3.0 Development Standards 3
3.1 Programming Language 3
3.2 Modularity of the Codes 3
3.3 Portability of the Codes 3
3.4 Code Internal Documentation 3
3.5 Setting of Array Limits 4

4.0 Software Development Management 5
4.1 ManagementPlans 5
4.2 Facilities Required 5
4.3 Linkages to other HEDRTasks 5
4.4 Contingency Planning 5
4.5 Project Records 5

5.0 Configuration Management 6
5.1 ConfigurationManagementPlan 6
5.2 CM of Documentation 6
5.3 CM of Source Code 6
5.4 CMof Executables and'Large'Data Fiies 6
5.5 Change Control 6

6.0 Documentation Required 7
6.1 Software Development Plan 7
6.2 Interface Requirements 7
6.3 Data Dictionary 7
6.4 Software Design Documentation 7
6.5 Module DevelopmentFolders 7
6.6 VerificationPlans 8
6.7 VerificationProcedures'and'TestEases 8
6.8 User Manuals 8

Table of Contents

7,0 Software Life Cycle Model and Requirements............. 9
7.1 DevelopmentPlanning g
7.2 RequirementsPhase 9
7.3 Design DescriptionPhase 9
7.4 ImplementationPhase 10
7.5 Final InternalDevelopmentReview I0
7.6 Testing and InstallationPhase 10

7.6,1 Module Testing 10
7.6.2 IntegrationTesting . - i 10
7.6.3 IndependentTeam Testing 11

7.7 Operationand MaintenancePhase 11
7.8 Developmentof Documentation __ 11

7.8.1 VerificationPlan Development". 11
7.8.2 Test Proceduresand Test Cases 11
7.8.3 User Documentation 12

8.0 Activities,Deliverablesand Schedules 13
8.1 Deliverables , ___ 13

8.1.1 Code Development Task"D'el"iverab'le's 13
8.1.2 Other HEDRDeliverables 14

8.2 Schedule for Activities 14

9.0 List of Abbreviations 16

Exhibits

Exhibit I: Software Design DescriptionContent 17
Exhibit2: Software VerificationPlan Content 20
Exhibit3: Test Procedureand Cases Content 22
Exhibit4: Software User DocumentationContent 24
Exhibit5: Module DevelopmentFolder Content 28
Exhibit6: Code WalkthroughReview Checklist 29

ii

.0 Introduction

1.1 PurDose

This SoftwareDevelopmentPlan (SDP) outlines all software activitiesrequired
to obtain functionalenvironmentalaccumulationand individualdose codes for
the HanfordEnvironmentalDose Reconstruction(HEDR)project. The modeling
activitiesaddresseduse the output of the air transportcode RATCHET to
computeradionuclideconcentrationsin environmentalpathways,and continue on
throughcalculationsof dose for individuals.

Work items covered in this SDP are those specificto the code development
team. Some items are mentionedthat will be performedby staff on other HEDR
tasks. Any activitiesor deliverablesnot the responsibilityof the code
developmentteam will be specificallyidentifiedas such.

I.8 Backaround

The Hanford EnvironmentalDose Reconstruction(HEDR)Projecthas a deliverable
in the June 1993 time frame to be able to start computingdoses to individuals
from nuclear-relatedactivitieson the Hanford Site during and followingWorld
War II. This project has high visibilitywith the client (Centerfor Disease
Control [CDC])and with the public through a TechnicalSteering Panel (TSP),
which providestechnicaldirectionto the HEDR Project.
!.3 AoolicableSQftware Requiremen1_

The softwarerequirementsfor this softwaredevelopmenttask are given in the
document "SoftwareRequirementsSpecificationfor the Hanford Environmental
Dose ReconstructionProjectAir PathwayEnvironmentalAccumulationand Dose
Models",draft dated November 10, 1992.

!.4 Descriptionof the Codes

The Software RequirementsSpecification(SRS) identifiesthe need for two
separatecodes to handle the environmentalaccumulationand individualdose
calculations. The codes will be named DESCARTESand CIDER, respectively.

1.4.1 DI_SCARTES

The DESCARTEScode will computethe environmentalconcentrationsof
radionuclidesand pass them to the CIDER code. The projectedsize of the code
is 4000 lines.

I.4.2 CIDER

The CIDER code will computedoses and their uncertaintiesfor individuals
living in the contaminatedenvironmentcomputed by DESCARTES. The projected
size of the code is 3000 lines.

2.0 Staffingand Budqet

The mix of technicalskills requiredto produceand document the DESCARTES and
CIDER codes includethe followingareas of expertise: i) design of data flow
and program logic, ii) FORTRAN coding,iii) C coding, iv) Unix operating
system,v) writing of documentation,and vi) configurationmanagement.

2,1 Code DevelopmentTeam

The code developmentteam will consistof the followingfive people.

• Paul Eslinger - DevelopmentTeam Leader
Skills:management,FORTRANcoding,writing documentation,and stochastic
applications
Education:BS, MA in mathematics,Ph.D. in statistics

• Terri Miley
Skills:Writing documentation,FORTRANcoding

• Steve Ouderkirk
Skills: FORTRANand C code, code requirements,code design,writing
documentation

• W111 Nlchols
Skills: FORTRANcoding, code _.sign,writing documentation

• Kelly Lessor
Skills:Unix operating system,FORTRANand C coding

2.2 ConfiqurationManaqement

The team member that will addressconfigurationmanagement issueshas not been
identified. This team member will be identifiedafter the TechnicalSteering
Panel (TSP) authorizesfunds for the continueddevelopmentof DESCARTESand
CIDER. A decision by the TSP is not expecteduntil after January8, 1993.

2.3 Quali.tyAssurance

The HEDR qualityengineer,Chris Larmy, will assist the code developmentteam
with qualityassurancerelated issues.

2.4 Budqe.t

The budget for the code developmentteam is $I00K betweenOctober I, 1992 and
January 8, Igg3. This budget is not enough for the team to work full-time,
therefore,Steve Ouderkirkwill work full-time;and Paul Eslinger,Terri
Miley, and Will Nicholswill work about 2/3 time.

The budget after January 8th, 1993, is still to be negotiated.

3.0 DevelopmentStandards

Required standardsand conventionsin the design and coding are discussed in
this section.

3.1 ProqramminqLanauaqe

The codes will be developedin FORTRANor Co At the current time the choice
is to use FORTRANfor DESCARTESand C for CIDER. A mix of the two languages
is permissibleeven within the same code, if requiredto achievetiming
requirementsor to meet disk space limitations.

Code written in FORTRAN shall be written to ANSI Standard FORTRAN 77
conventions. Any extensionsto the language standardthat are used must be
identifiedand the reason for use documented.

Code written in C shall be written to ANSI Standard C conventions. Any
extensionsto the languagestandardthat are used must be identifiedand the
reason for use documented.

Verificationthat the code is written to the p:ogramminglanguage standards
will be done in two ways. First, during the code walkthroughsthe reviewers
will be instructedto look for nonstandardlanguageuse, and second,options
are availableon the languagecompilersto identifynonstandardsyntax and
constructs.

3.2 Modularityof the Codes

The code shall be designed in a modularfunction. In general, a module should
perform only one function. A particularfunctionthat is performed in several
places in the codes should be implementedin a singlemodule. Verificationof
the modular design of the code shall be performedin the final design review.

3.3 Portabilityof the Codes

There is no requirementfor the code to be portableto any machine other than
the HEDR Sun. However,use of only standardlanguagefeatures will enhance
the future portabilityto anotherplatform.

3.4 Code InternalDocumentation

Each module, function,or subroutineof the code shall contain internal
comments. The purposeof the comments is to allow a person other than the
developerto follow the program logic and be able to modify the code.

ii_am mlmnmmiXaDIll_|in NlIRlmom dN*ilimmnIN|l|lHNaiimlmimimilig||_ gliim | |mi|l|||i||

Each module shall contain a header that incorporates the following
information:

• nameand version of the module
• date of completion
• history of modifications and modification dates
• purpose of the module
• short description of the algorithms in the module
• major assumptions
• a description of all input and output variables, including data type,

storage, accuracy, and units if applicable
• references, if applicable
• calling sequence
• error reporting and/or recovery
• auxiliary routines needed

Each variable in a commonblock or global storage location shall be described
in embeddedcomments. The commentsshall describe the purpose of the variable
and identify any constraints on the use or modification of the variable.

3.5 Settinq of Array Limits

All length of arrays or dimension statements shall be set using the FORTRAN
PARAMETERconvention or the C #define convention.

|

4.0 Softw_areDevelopmentManaqemen_t

4.1 ManaqementPlans

The work performed in this activityis controlledby the HEDR Project
ManagementPlan and the HEDR EnvironmentalAccumulationand Dose Code
DevelopmentWork Plan (October30, 1992).

4.2 FacilitiesRequired

The softwareshall operate on the HEDR Sun 690 platform. The machine has 128
Mb of memory and approximately24 Gb of disk storage. Each member of the
developmentteam requires simultaneousaccess to the HEDR Sun.

4__3.Linkagesto other HEDR Task_

lt is recognizedthat this coding effortwill use data produced by several
other HEDR tasks. The data is required to allow the environmentalpathways
and dose codes to be run to completion. Interfacedefinitions,test files and
final data files must be availableon a timely basis for the code design to
proceed, lt is assumed that the other HEDR tasks will be able to provide the
data in the agreed upon formatto the code developmenttask. Impactson the
scheduleddeliverablesmay occur if this assumptionis incorrect.

The code developmentteam will work with the HEDR TechnicalTurnover lead,
Bill Farris, in defining interactionswith other HEDR tasks.

4.4 Continqenc.yPlanninq

The softwaredevelopmentand documentationschedule is very tight for meeting
a June, 1993, productionschedule. Fundingperturbations,hardware or system
softwareproblems,or staff turnovermay all impact the work schedule.
Contingencyplanning is limited,at this ti,_e,to identifyingany difficulties
as early as possible,and promptly bringingthem to management attentionfor
resolution.

4.5 Proje-tRecords

All documentsor code listingsproducedby the developmentteam shall become
projectrecords. The time that each item becomesa project record is the time
identifiedin later sectionsof this SVP where the item is baselinedor
submittedto configurationmanagement. A copy of the contents of the module
developmentfolders shall be enteredas a projectrecord when the developer
has finishedthe implementationand developertest for that module. Any later
modificationsto the contentsof a module developmentfolder shall be entered
as a project record at the successfulcompletionof the operationalreadiness
review.

5.0 ConfiqurationManaaement

5.1 ConfiqurationManaqementPlan

Configurationmanagement (CM) is required for versionsof the software and
documentationreleased to testing. A change request system for tracking
modificationto CM versions of softwareand documentationmust be implemented.
The CM systemwill also be used to track data files deliveredto the code
developmenttask from other tasks on HEDR. Both test and final versions of
these files will be maintained in CM.

A configurationmanagementplan will be written to cover all aspectsof
configurationmanagementof the code, documentation,and associateddata.
This plan will be initiatedfollowingthe Technical Steering Panel (TSP)
meeting in early January, 1993. The currentplan is to use a slight
modificationof the procedurePNL-YMPO-SCP-3,"SoftwareConfiguration
Management"for controllingconfigurationmanagement.

Configurationmanagementof software items prior to creation and approval rf
the CM plan may be limitedto having signed,dated, versions of documentation
stored as project records.

5.2 CM of Documentation

Configurationmanagementof softwaredocumentationis required, lt is
anticipatedthat all documentationfor the codes will be written in Word
Perfect5.1 for a PC. The documentationcould be developedand managed on a
PC server. A CM tool such as the softwareproduct PVCS could be used to track
versionsof the softwaredocumentation.

5.3 CM of Source Code.

Configurationmanagement of the source code is required. CM of the source
code could be done on the HEDR Sun if desired,or the source code could be
offloadedto a PC serverwith the documentation.

5.4 CM of Executablesand Larqe Data Files

Configurationmanagementof executablesand data files is required. An
automatedCM tool for handling large ASCII or binary data files or code
executablesmay need to be purchased, lt is anticipatedthat all large files
will reside on the HEDR Sun.

5.5 Chanqe Control

A change controlsystem will be developedand implemented. This system will
be initiatedfollowingthe TSP meeting in early January, 1993. The current
plan is to use a slightmodificationof the procedurePNL-YMPO-SCP-4,"Change
Control" for controllingchangesto the codes.

6.0 DocumentationRequired

Extensivedocumentationrequirementsare listed in the requirements
specification. However,these documentsonly have to be completedas drafts
by the end of the developmenteffort - they can be publishedlater.

Both DESCARTESand CIDER will requirethe documentationitems outlined in the
subsectionsbelow. Pre-processorsand post-processorsdeveloped by this
coding team will only require a User's Guide and a module developmentfolder.

Mathematicalmodel descriptionshave alreadybeen publishedas HEDR documents.
Documentationgeneratedfor this coding task will includethe mathematical
models by reference.

6.1 Software OeveloomentPlan

A SDP {this document)shall be written to providemanagementcontrol of the
remainderof the developmentwork for each task.

6.2 InterfaceRequirements

The codes being developed require input in severalforms from other HEDR
tasks. Interfacesto each of these data items will be specifiedand
documented. The interfacesbetweenthe two codes will also be formally
documented. This informationwill be publishedas appendicesto the DESCARTES
and CIDER des.igndocuI_!_nt_;.

6.3 Data Dictionary

A data dictionarywill De developedfor each code. The data dictionarywill
provide a link betweenthe symbols in the mathematicalequations and their
implementationin the code. Informationsuch as variable name, variable type,
storagelocation,data units, and variabledescriptionwill be includedin the
data dictionary.

6.4 Software Desiqn Documentation

Documentswill be writtendescribingthe design of the DESCARTESand CIDER
codes. Requirementsfor the content of these documentsare given in Exhibit
I.

6.5 Module DevelopmentFold;_s

Module developmentfolder_will be maintainedfor each module. They will
contain such informationas the requirements(input,computational,and
output) for the ,nodule,a code listing,and documentationof developertest of
the module. Items containedin the module developmentfolder need not be
typed, but must be legible and copier reproducible. Requirementsfor the
contents of the module developmentfoldersare given in Exhibit 5.

6.6 VerificationPlans

Software VerificationPlans (SVP's)will be w_:ittendescribing the tests to be
run to verify correct operationof the codes. Requirementsfor the contents
of the SVP's are given in Exhibit 2. A draft of the SVP's will be written by
the developmentteam.

The independenttest team shall have the freedomto add or delete tests and
will be responsiblefor finalizingthe SVP's. lt is anticipatedthat the SVP
for Jeanne Simpson'ssensitivitycode will providethe basis for many of the
tests needed for DESCARTESand CIDER.

6.7 VerificationProcedqresand Test Cases

Specific verificationtests for the codes will be run using documented test
proceduresand cases. Requirementsfor the contentof the test proceduresand
cases are given in Exhibit3.

6.8 User Manuals

The User's Manual will containdiscussionson: i) assumptionson runningthe
code, ii) generationof controldata, iii) use of data files, and iv) system
requirements. The intent of this draft document will be to provide trained
HEDR staff with enough informationto successfullyrun the environmental
pathways and dose codes. Requirementsfor the contentof the User's Manuals
are given in Exhibit 4.

In additionto user'smanuals for DESCARTESand CIDER, user instructionswill
be developedfor the pre-processorsand post-processorsnecessaryto input
data or analyzeoutput data.

7.0 Software Life Cycle Model and Requirements

Developmentof the DESCARTESand CIDER codes will be controlledthrough use of
PNL's softwarecontrolprocedures. Documentationand review requirementsfor
the codes will be specifiedthroughapplicationof SCP-70-312"Determination
of Software Requirements". The softwarelife cycle model to be followed in
the developmentof DESCARTESand CIDER is outlined in this section, and
additionalrequirementsare identified. The additionalrequirementsare
under!ined.

7.1 DeveloomentPlannino

This SDP serves as th@ auidinqdocument for all.subseaueni_development
activities, lt documentsthe life cycle appropriateto the activity,_
designatesthe point at which the major pieces of documentationand source
code will be generated, reviewed,and baselined,and lists the formal reviews
to be performed.

Upon completionof the review and incorporation,of any comments,the SD.Pis
_approvedand submittedto ConfiqurationManaqem.ent(CM) as a baseline
.document.All revisionsto the baselineSD_Preouireformal chanqe requests.

7.2 ReauirementsPhase

The Requirementsphase of the life cycle documentsthe performance,design
constraints,attributes,functionalityand the external interfacesof the
computer software. During this pilase,the requirementsthat the softwaremust
satisfyare defined and formallydocumentedin the SRS. The SRS is then
formallyreviewedto the SOW and other specifiedrequirementsby independent
reviewers.

UDon completionof the review and incorporation...ofany comments,the SRS is
approved by the projectmanaqer and submittedto ConfiqurationManaqement (CM)
as a baselinedocument. All revisionsto the baseline.SRS require formal
chanqe requests.

7.3 Desiqn DesCriptionPhase

During the design descriptionphase of the life cycle the softwaredesign is
establishedand documented in the SoftwareDesign Description(SDD). The SDD
specifiesthe overall structureof the code and the reductionof the model
into physical solutions,such as data flow and data control. The structureof
the models, data structure,componentalgorithms,assumptions,application,
location,and numericalstabilityof the models are identified.Input to the
VerificationPlan and test cases is provided in this phase of the software
development. The content of the SDD is described in Exhibit I.

UPOncomoletion of a formal review and incorporation of any comments, the SOD
is aooroved b.y the pro.ie¢t manager and submitted to CMas a baseline docqment.
All revisionsto the baseline SOD requireformal change requests.

7.4 ImplementationPhase

During the Implementationphase the design is translated into code using a
programminglanguageand inputs from the SDD. Code debuggingis performedand
code walkthroughsare done to remove errors in the coding. The SoftwareUsers
Document (SUD) is initiated,and final input to the SoftwareVerificationPlan
and test cases is provided. Exhibit4 gives requirementsfor the contents of
the SUD.

A module develoom_ntfolder shall be maintainedfor each module. The folder
shall contain desiqn infcrmation and docu_mentation of deYelooer te_tinq,
Exhibit 5 qives reauirement_ for the contents of the modqle development
folder.

.Acode walkthrouqhshall be oerfo_d when the implementationphase is
approximatelyBO% complete for each of the DESCARTESan_lCIDER codes, The
walkthrouQhreviewersshall use the checklistPNL-HEDR-CHK-CODin their
review.

L 5 Final InternalOcveloDmentReview

At the conclusionof the implementationphase, the code and its documentation
shall be subjectedto a Final InternalDevelopmentReview per SCP-70-313.

Items alreadyoeer reviewedmay be inCorporatedin the review by reference.

7.6 Testinq and InstallationPhase

Three types of testing are covered in this section:Module Testing,
IntegrationTesting, and IndependentTesting. An operationalreadinessreview
shall be conductedby projectmanagementat the completionof all the tests
per SCP-70-315.

7.6.1 Module Testing

Programmodules shall be tested in accordancewith the approvedSoftware
VerificationPlan (SVP) and the Test Proceduresand Cases to assure functional
requirementshave been met. Documentedmodule tests from the module
developmentfolderscan be used to satisfythis requirement.

7.6.2 InteqrationTesting

During IntegrationTesting,the program elementsare integratedand tested
together in accordancewith the approvedSVP and the Test Proceduresand Cases

10

to assure functionaland interfacerequirementshave be,en met. The
Integrationtestingshall be performedby the developmentteam.

7.6.3 IndependentTeam Testinq

The software is then installedin its operationalenvironmentand tested to
ensure that it performs as required. The testing is performed in accordance
with the approvedSVP and the Test Proceduresand Cases. The tests shall be
run by an independenttest team. The test team members shall be chosen by the
projectmanager. They cannot have been involvedin the implementation
(coding)of the code they are testing.

Documentationof the te_tinq, to includetest results and evaluationof test
results aaainstthe SVP. shall be accomDlishedDrior i_Qoroceedinqto the
ooeratiQnalreadines_review,

7.7 Ooerationand MaintenancePhase

During the Operationand MaintenancePhase, the software is placed in its
operationalenvironmentand monitored for satisfactoryperformance. As
appropriate,the softwareis modified to correct errors,or to accommodate
changing client, user or internalrequirements.

Revisionsl_qthe softwarein the operationand maintenancephase requires a
formal _hanqe request.

7.8 Developmentof _)ocumentation

The SoftwareVerificationPlan (SVP),Test Proceduresand Cases, and User
documentsmust be writtenduring the developmentlifecycleof the computer
code. The followingsectionsdescribewhen these documents should be
initiatedand completed.

7.8.1 VerificationPlan Development

The SVP shall be initiatedby the Lead Developer in the Requirementsphase of
the softwarelife cycle. The final SVP will addressthe requirements
specifiedin Exhibit2 with input from the SRS, SDP and the SDD. The
independenttest team may contributeadditionaltests to the SVP prior to
formal review. The SVP shall be subjectedto a formal review, ltshall be
completedprior to the start of the independenttesting.

Upon completionof the review and incorporationof any comments,the SVP is
approved by the projectmanaqeF and submittedto CM as a baselinedocument.

7.8.2 Test Proceduresand Test Cases

Followingthe approvalof the SVP, Test Proceduresand Cases are developedby
the Lead Developerwith input from the Test Team Leader,containingthe
elements given in Exhibit3.

11

Upon completion, the Test Procedures and Cases are approved by the Project
Manaqer and submitted to the CM Coordinator for control as a baseline.

7.8.3 User Documentation

The Software User Document (SUD) shall be initiated during the Implementation
Phase by the Lead Developer to address the requirements specified in Exhibit
4, with input from the Code listing, SRS, SDP, and SDDo The SUD is reviewed
and exercised during the Test phase for correctness, functionality and other
specified requirements by independent reviewers.

Upon completion of the independent review _nd incorporation of any comments,
the SUD is aDoroved by the project manaQer and submitted to CH as _ base]ine
document,

12

8.0 Activities,Deliverablesand Schedules

This sectionaddressesactivities,schedulesand deliverablesfor the code
developmenteffort. Since the budget has not been finalized,the following
dates are to be consideredas target,rather than firm, dates. Firm dates can
only be establishedafter the budget has been finalized.

8.1 Deliverables

The softwarerelateddeliverablesfor the task are divided into two areas of
responsibility,one for the code developmentteam, and the other for other
HEDR tasks

8.1.1 Code DevelopmentTask l)eliverable_

The deliverablesfor the developmentteam and the responsibleauthors are as
fol1ows:

, i

J Author Date Document

Eslin_er 12/10/92 Software DevelopmentPlan

Eslinger....1/12/93 SoftwareRequirementsSpecification

Es]in_er 2/.!5/93 Confi_lurationMana_lementPlan

Eslinger 12/18/92 CIDER Benchmarkin_lReport

Eslin_er 12/18/92 DESCARTESBenchmarkin_Report

Nichols 1/30/93 DESCARTESSoftwareDesi_InDescription

Ouderkirk 1/30/g3 CIDER SoftwareDesign Description

Nichols 1/30/93 DESCARTESInterfaceSpecification

Ouderkirk 1/30/93 CIDER InterfaceSpecification

Nichols 2/15/93 DESCARTESData Dictionary, ...

Ouderkirk 2/15/93 CIDER Data Dictionary

Mi].e_, 4/15/93 DESCARTESUser's Guide

Ouderkirk 5/I/93 CIDER User's Guide

Eslinger 4/I/93 Draft DESCARTESVerificationPlan ii

Eslin_er 4/15/93 Draft CIDER VerificationPlan

Nichols 4/15/93 DESCARTEScode listin_l

Ouderkirk .5/I/93 CIDER code_listin_ ..

13

8.1.2 Other HEDR Deliverables

Relateddeliverablesthat are the responsibi.lityof other HEDR tasks include:

HEDR Data ManagementPlan
Final Software VerificationPlan (SVP)
Final Software Test Procedures (STP)
Review Reports (Final InternalDevelopmentReview [FIDR])
Review Reports (IndependentTesting)
Review Reports (OperationalReadiness)

8.2 Schedule for Activities

Person Date Activity

li,|

I'" 6eneralItms

Shomker 11/9,/92 Finish draft SoftwareRequir_nts Specification(SRS)

Eslin_er 1/12/93 Baselinethe SoftwareRequirementsSpecification,{SRS)

Eslinger 12/10/92 Specifythe benchmarklngtests to be perfo_d ,,

Eslinger 12/10/92 Finish the SoftwareDevelopmentPlan ISDP)

* 1/8/93 TSP review of the development effort

Eslinger 1/12/93 In(tlateConflguratlonManag_nt Pl(;n

Esllnger 3/I/93 Implmnt ConfigurationManag_nt plan

i

DESCARTES-RelatedItms
ii

Eslinger 12/18/92 Finish the benc_rkin_ tests for DESCARTES

Nichols 1/30/93 Design complete for DESCARTES ii,, ,i , ii

* 2/10/93 Final Software Design,,Review tor DESCARTES

Nichols 2/15/93 Baseline Software Design (including Data Dictionary and Interface
Specifications I for DESCARTES

--- 2/16/93 Begin implementation of DESCARTES ii,.

Miley 2/16/93 Begin DESCARTESUser'sGuide

Eslin_er2/16/93 Begin SoftwareVerificationPlan (SVP) for DESCARTES

* 3/25/93 Perfom DESCARTESwalkthrough , ,

Eslinger 4/I/93 Finishdraftsoftware verificationplan (SVP) for DESCARTES

* 4/15/93 Baseline softwareverificationplan (SVP)for DESCARTES

Miley 4/15/93 FinishUser'sguide for DESCARTES i

* 4/15/93 Finishverificationproceduresand cases for DESCARTES

, * 4/15/93 Final IndePendentDevelo_nt Review (FIDR)for DESCARTES

14

Person Date Activity i

Nichols 4/15/93 Baselinethe DESCARTEScode,, ,, ,,,

* 4/16/93 Start independenttestinQof DESCARTES ,

Miley 5/30/93 BaselineUser's Guide for DESCARTES ,,,

* 5/30/93 Performoperationalreadinessreviewfor DESCARTES

i i i

CIDER-Related Items
,i

Eslln_er 1213192 Finish the benchmarkin_ tests for CIDER

=-.--.-..... -.....Ouderklrk ,I130193 Designcompletefor CIDER , _..............

......... * 2/10/93 Final SoftwareDesignReviewfor CIDER

Ouderkirk 2/15/93 BaselineSoftwareDesign (includingData Dictionaryand Interface
Specifications)for CIDER

--- 2/16/93 Begin impls_entation,,,pfCIDER

Ouderkirk 2/16/93 Begin CIDER User'sGuide

Eslinger 2/16/93 BeNin SoftwareVerificationPlan ISVP) for CIDER

* ,3/25/93, PerformCIDERwalkthrpu_h , ,,

Es!inger ,,4/15/93 Finish draft software verificationplan {SVP) for CIDER

* 5/I/93 Baseline softwareverificationplan for CIDER

Ouderkirk 5/I/93 FinishUser'sguide for CIDER

* 5/I/93 Finishverificationproceduresand cases for,CIDER
...

Ouderkirk 5/I/93 Baseline the CIDER code

* 5/i/93 Final IndependentDevelop_nt Review IFIDR)for CIDER

* 5/I/93,,,Start independenttestingof CIDER

Ouderkirk 5/30/93 BaselineUser'sGuide for CIDER,,

* 5/30/93 Performoperationalreadinessreview for CIDER

* Activity performedby personsor organizationsother that the software
developmentteam.

15

g.o List of Abbreviations

The followingabbreviationsare used in this document:

CDC Centers for Disease Control
CM Configurationmanagement
FIDR Final internaldevelopmentreview
HEDR Hanford EnvironmentalDose Reconstruction
MDF Module developmentfolder
SDD Software design description
SDP Software developmentplan
SOW Statementof work
SRS Softwarerequirementsspecification
STP Softwaretest procedures
SUD Softwareuser document
SVP Softwareverificationplan
TSP TechnicalSteering Panel

16

Exhibit 1: Software Design Description Content

The softwaredesign shall be describedin a manner that is easily traceableto
the computer softwarerequirements. The format may be modified so long as the
requiredcontent is addressed. Justificationmust be providedfor those
portionsof the contentdeemed to be not applicableto the specific activity.

Sta__._nHardHeading

Project: Hanford Environmental Dose_Reconstruction Project
Program:
Title of Document:
Configuration Item ID No.:

Table of Contents

Includepage numbers and titles for each numberedsection, and all figures,
tables,and appendices.

I. Relationshipto Requirements.

Provide a descriptionof the major componentsof the computer softwaredesign
as they relate to the requirementsin the computersoftware requirements
specification. Show how each requirementfor the code will be met in the
design. Document,using a table, matrix or other structure,where each
functionalrequirementfor the code will be met.

2. MathematicalModel & NumericalMethods.

Providedescriptionsof mathematicalmodels and numericalmethods. This
sectionof the design descriptionprovidesa complete explanationof the
methods used. As describedbelow, it shall includea derivationof and
justificationfor the model and will clearlyexplain its capabilitiesand
limitations.

The discussionsof mathematicalmodels and of numericalmethodsmay be
separatedinto differentsections providedthey are adequatelycross-
referenced.

a. MathematicalModel Derivation. Derive from first principlesthe
mathematicalmodel. Justify each step in the derivationand note how
assumptionsand limitationsare introduced, lt is acceptableto provide
referencesto publishedmaterial containinga derivation in lieu of a new
derivation.

b. General numericalprocedure. Describethe numericalsolution strategy
and computationalseq,jence.Use flowchartsand block diagrams. Give

17

referencesfor the basic numericalprocedure. Show how the numerical
strategy is relatedto the mathematicalstrategy (e.g., how the boundary
conditions are introduced).

c. Numericalmethod type. Characterizeany numericalmethod used in the
model which goes beyond simple algebra (e.g.,finite-difference,
Simpson'srule, cubic splines). Derive the numericalprocedure from the
mathematicalcomponentmodel. Give referencesfor all numericalmethods.
Give the final form of the numericalmodel and explain the algorithm.
_tate what variablesare input to and output from the componentmodel.

d. Numerical stabilityand accuracy. Discuss the stabilityand accuracyof
the numericalmodel. Distinguishbetweenthose aspects of stabilityand
accuracywhich have been proven mathematicallyand thos_ which have been
observed in practice.

3. Software Structure.

Providea technicaldescriptionof the computer softwarewith respectto
control logic, data flow, and data structures. Describebriefly the role of
each componentmodel within the overall structureof the code. Show how each
componentmodel contributesto the overall solutionof the problem.

For each componentmodel, providethe following:

a. Purpose. Describe the purpose and scope of the componentmodel. State
in general terms the input to and the output from the model and the way
the informationis processed. If the model is used only in certain
cases, state under what circumstancesit is used.

b. Assumptionsand Limitations. Describe the assumptionsand limitationsof
the componentmodel. Includethe known ranges of validity of the model
for all variables. State any known uncertaintyabout the validity of the
model.

, c. Notation. Identifyall algebraicvariablesused in equations. Give the
' mathematicalsymbolsused in both the fundamentalequationsand their

equivalentsin the numericalformulation.

d. Application. Discuss the applicabilityof the componentmodel for its
intendeduse. Point out any extrapolationof the model or use out-of-
range. Describe any restrictionson the use of the model. State whether
the validityof the model will be affectedby unusualor extreme
conditions.

4. Data Descriptions

Provide a descriptionof the allowableand tolerableranges for inputs and
outputs.

18

a. Control Inputs. Discussthe general approachused to enter all control
informationto the code. Describe in detail all input controlvalues.

b. Data Inputs. Discussthe general approachfor entering data into the
code. Describe the content and format of all input data files.

c. OUtDUtS. Describethe content and format of all output files. Discuss
the size of the data files under differentprogram options.

5. Exoerience.

Discussthe overallperformanceof the entire model. Note the conditions
under which the model is expectedto yield good or bad results. Point out
specificcomponentmodels known to performpoorly under certaincircumstances.
Give any general rules or recommendationsto follow in use of the models.

Siqnatures:

Approval: ProjectManager
Concur: Qua!ity Engineer
Author : Lead Developer

19

Exhibit 2: SoftwareVerificationPlan Content

This exhibitestablishesthe requiredcontent for the Software Verification
Plan. The format may be modified so long as the required content is
addressed. Justificationmust be providedfor those portions of the content
deemed to be not applicableto the specificactivity.

Standard Headinel
Project:Hanford EnvironmentalDose ReconstructionProject
Program:
Title of Document:
Item ID No.:

Table of Contents

Includepage numbers and titles for each numbered section,and all figures,
tables, and appendices.

1.o

Identifythe system or projectand items to which this SVP appliesand state
the purposeof the SVP.

2.0 VerificationTasks

Specifythe verificationactivitiesrequired by the SoftwareDevelopmentPlan,
e.g. Software RequirementsReview,Software Design Review, and Test Phase
Activities. Describe the methods (e.g.,inspection,analysis,demonstrations,
and tests) to be used in performingthe verificationactivitiesand the
acceptancecriteriato evaluate the resultsof the verificationtasks.
Identifyspecifictools and techniquesthat may be requiredfor the
performanceof the verificationtasks.

3.0 Resources

Identifythe resourcesfor the performanceof each verificationtask.
Classify resourcesin categoriessuch as staffing,training,equipment,
facilities,etc. If specifictools are required for the performanceof
verificationtasks, specifythe sourceof these tools and their availability.

4.0 Test Documentation

Describe all test procedure(s)and related test case specifications.

5.0 VerificationMatrix

Describe throughuse of a matrix or similarmethod how each of the
requirementsin the SRS will be verifiedand how the code will be validated
through performanceof the plannedV&V activities,i.e., for each requirement,
cross referenceto the associatedtest case(s)or validationactivity.

20

6.0 Verification Schedule

Develop a timetableor schedule indicatingthe projecteddate for completion
of the softwareverificationactivity.

7.0 HardwareRequirements

Identifythe specifichard,are configurationand softwareenvironment(i.e.
operatingsystem,compiler,linker)under which the Validationactivities
shall be performed.

$iqnatures:
Approval:ProjectManager
Concur: Quality Engineer
Author: Lead Developer

21

Exhibit 3: Test Procedure and Cases Content

This exhibit establishes the required content for the Test Procedures and
related Test Case Specifications. The format may be modified so long as the
requiredcontent is addressed. Providejustificationfor those portions of
the requiredcontent deemed to be not applicableto the specific activity.

StandardHeading

Project:Hanford EnvironmentalDose ReconstructionProject
Frogram:
Title of Document:
Item ID No.:

Table of contents

Includepage numbers and titles for each numberedsection, and all figures,
tables,and appendices.

1.0 Introduction

Summarizethe featuresthat are to be tested. State whether the subject
testing is unit/integrationor installationtesting.

2.0 Scope

Identifythe test items includingtheir version/revisionlevel. Identifyall
featuresto be tested includingthe test case specificationsassociatedwith
each feature. (Test Case Specificationswill be Section8.0 of the Test
ProcedureDocument,or optionally,the Test Case Specificationsmay be
separatedocumentswith separateconfigurationmanagement control
identificationnumbers.) Identifyall items and features that are to be
excludedfrom the testing, state reasonsfor exclusion. Identify special
requirementsnecessaryfor the executionof this procedure.

3.0 Approach

Describethe approachto testingto ensure adequatetesting of all features.
Identifymajor testingtasks and the time requiredto perform each of these
tasks. Identifyactivities,techniquesand tools necessaryto prepare for and
performtesting. Identifytest item pass/failcriteria,suspension/resumption
criteria,and test deliverables.

4.0 Resources

Identifythe physicalcharacteristicsof test facilitiesand software or
suppliesor specialtest tools that may be needed. Specify the level of
securitythat must be provided and the source for all needs that are not
currentlyavailableto the test group. Identifythe personnelresponsiblefor
managing,designing,preparing,executing,witnessing,checkingand resolving

22

tests. Specifytest staffingneeds, ard identifytraining options for
providingnecessaryskills.

5.0 Schedule

Specify the schedulefor each testingtask and test milestone. Specify the
period of use for each testing resource.

6.0 AssumDtion_and Risk@

Identifyassumptionsand associatedrisks. Specifythe names and titles of
all personnelwho shall approvethe test procedure.

7.0 Procedure Steps

Describethe sequenceof actionsnecessaryfor preparationbefore execution,
beginningof execution,and during executionof the procedure. Describe
methods or formatsfor logging the resultsof test execution and test
incidents. Describehow test measurementswill be made. Describe the
sequenceof actionsnecessaryfnr shutdown,restart, executionhalt and
restorationof the hardware/softwareenvironment. Describe the actions
necessaryfor dealing with anomaliesthat may occur during execution.

8.0 Test Cases

Documenteach test case specificationseparatelyand include the following
content for each.

a. Introduction. Specifythe unique identifierassigned to the test
case specification. Identifyand brieflydescribeth_ items and
featuresto be exercisedby the test case. Providethe rationalefor
selectionof the test case. Specify pass/failcriteria for all the
featuresto be tested.

b. Input/OutputSpecifications. Specifyall inputs and relationships
among inputs requiredto execute the test case. Specify all outputs
and featuresrequiredof the test items.

c. Requirements/Resources.Specify the characteristicsand
configurationsof any hardware or softwareor unique facility
requiredto executethe test case. Describe any constraintson the
test procedurethat executesthe test case. Summarizethe nature of
intercasedependencies.

Siqnatures:

Approval: ProjectManager
Concur: Quality Engineer
Author: Lead Developer

23

Exhibit4: Sofare User DocumentationContent

This exhibit establishes the required content for the User Documentation. The
format may be modified so long as the required content is addressed.
Justification must be provided for those portions of the content deemed to be
not applicableto the specific activity.

The User's Documentation,in combinationwith the Software Source Code, will
providesufficientinformationfor the user to set up and run problems as well
as resolvepossibledifficulties. If any of the informationdescribedbelow
is documentedin th(code, the lines in which the informationmay be found may
simply be referenced.

1.0 Standard Headino

Project:Hanford EnvironmentalDose ReconstructionProject
Program:
Title of Document:
Item ID No.:

2.0 Ta)le of Contents

Include page numbers and titles for each numbered section, and all figures,
tables, and appendices.

3.0 Prouram Considerations

3.1 Prooram options - Discuss the function of each major program option;
give special attention to effects of combinations of options. Relate
options to the input values which control them.

3.2 Proqram oaths - Describe the purpose of each subroutine. Use
flowcharts and block diagrams to explain the paths the program can
take. If parts of the code are executed only under certain
conditions, state those conditions. Showhow the computational
sequence and solution strategy described in the Software Design
Description are related to the program flow.

3.3 Pata _tructures - Discuss how data are stored during computation.
Describe the purpose and content of important commonblocks and
arrays. State the array dimensions. If dynamic dimensioning is
used, describe the indexing algorithm. This section, together with a
code listing, shall be sufficient to allow the user to follow the
flow of important data through the computational sequence.

3.4 Initialization - P_'ovide any values automatically assigned to
important v_riables. These shall include values of physical
significanceand parameterswhich affect program execution. State

24

where the values are initializedand whether they are default or
fixed values.

3.5 Restartprocedures- Describe any restartcapabilitiesof the code
and how they are used.

3.6 ErrQr orocessinQ- Describe the points of origin and likely causes of
all major error messages,error switches,and abnormal stops.

4.0 Data Files - Internal& Exteri)al

4.1 Content- Outline the general content,purpose, structure,units,
ranges, and organizationof each data file.

4.2 Use by orooram - Describe how and when the files are read and written
by the program.

4.3 Auxiliaryorocessinq- Describe any availableauxiliaryprograms
which create,modify,or use the files.

S.O Input Data

5.1 General considerations

a. Techniques - Describe special input techniquesand requirements,
e.g., blank field treatment,order of items,field delineation,
handling of stochasticparameters.

b. Consecutivecases - If the code is able to retain input data from
previous cases, give conditionsfor retentionand reinitialization.

c. Defaults - Give the general conventionsgoverningdefault values.

5.2 l[ndividualinput records

a. Record identifier- Give the line identifier,if any, for this type
of record.

b. Input variables- State the code variableswhich will contain data
given on this record.

c. Format - Specifythe format of this record,if any.

d. Need - For each variable,specifywhether input is necessaryor
optional for both start and restart runs.

e. Repetition - State how many of these input records are requiredor
may be used optionally.

f. Units - For each input field, state the dimensionalunits.

25

g. Default - State any defaultvalues for each field.

h. Description- Define the meaning of each variable and discuss its
primary use within the code. State how the user will assign values
in setting up a run.

i. Range - State the acceptablelimits for each variable necessary for
successfuloperationof the model in the programmingsense.

6.0 System Interface

6.1 System-dependentfeatures- List the external references in the
program which must be suppliedby the system,and state the purpose
of each. Includeplot and mathematicallibraries,but omit standard
programminglanguage intrinsicfunctions.

6.2 _9mDiler reauirements- Specifywhat compilershave been used and any
special load optionsthat are necessary. Includecompiler options,
such as indirectlarge core memory addressing.

6.3 HardwarQ requirements- Describe any specialfeatures needed. State
the amount of centralmemory required for a typical case, or give an
algorithmfor determiningL _quired amount of memory.

6.4 Command files - All computer codes require some system commands to
control program initiation,manipulationof files, and interaction
with other programs. Describe the command files necessaryto run the
code as part of a modeling analysis. The appropriatelevel of detail
will depend on the degree to which command files contain logic
affectingprogram flow, manipulationof files, and communication
among programs. Give sample command files. Discuss application
dependence.

7.0 Output

Discussthe code output. Relate edited output to input options, and state the
origin and meaning of the output variables. Describe any normalizationof
results and list associateddimensionalunits. Describe any graphical
capabilitiesof the code.

8.0 Sample Problems

Choose a few problems which demonstratehow the code is used. These problems
need not have known solutionsor experimentaldata. However, they shall
exercisea large portionof the availableprogrammedoptions, but should use
only a reasonableamount of computertime. Input deck listings and sample
output shouldbe given and explained.

26

9.0 Reportinq Problems

Give informationfor obtaininguser and maintenancesupport.

Signatures-

Approval:ProjectManager
Concur: Quality Engineer
Author: Lead Developer

27

Exhibit 5: Module Development Folder Content

This exhibit establishes the required content for the Module Development
Folders (RDF). The format may modified so long as the required content is
addressed. The MDF is considered a working document. Entries in the MDFare
not required to be typed or peer reviewed as they are entered. However, each
item must be legible and capable of reproduction.

The MDF will providesufficientinformationto meet the followingcriteria:
i) allow anotherdeveloperto finish a partiallyimplementedmodule in
the absenceof the originaldeveloper,and
ii) provide documentationof developertests.

1.0 St,_pdard Headinq

Project:Hanford EnvironmentalDose ReconstructionProject
Program:
Title of Module:
Item ID No.:

2.0 Table of Contents

Includepage numbers and titles for items entered.

3.0 Desiqn Joformation

Includeitems such as:
• descriptionof the algorithm
• data flow diagrams
• descriptionof inputs,includingstoragelocationand units
• descriptionof outputs, includingstoragelocationsand units
• tradeoffsmade in choosingbetween implementationoptions
• justificationand descriptionof extensionsto language standards

4.0 DeveloperTest Information

Module level tests will be reviewedduring the FIDR to evaluate readinessof
the code to proceedto independenttesting. In addition,they may be used by
the independenttest team during their evaluationof the code.

Includesuch items as:
• descriptionof the test
• results of hand calculations
• test results
• complete enough descriptionof inputsand outputs so the test can be
rerun

28

PNL-HEDR-CHK-COD

Exhibit 6: Code Waikthrough Review Checklist

The following items shall be considered in the review of the code listing.
Items marked with a "*" identifyinformationthat is required. Items marked
with a "." identify informationthat will enhance the qualityof the product,
but are not required.

I. SDP an_ SDD Reouirements

* Are all of the softwarefunctionalrequirementsin the SDD addressed?

* Does the code adhere to the coding standardsand conventionsrequired in
the SDP?

* Is the code written in the languagespecifiedin the SDP?

• Does the code contain identificationand configurationmanagement
numbers? Are these numberswritten to all applicableoutput files?

2. DeveloperTest and Inspection

* Has the developerperformedtests to remove coding errors?

* Has the developerperformedinspections

* Has each module or subroutinebeen unit tested?

* Has each routine been checkedfor a range of variables?

• Has each routine been tested for every logic path within the routine?

. Have debug statementsbeen incorporatedand used to print variablesfor
checking?

3. Data ReferenceConsiderations

• Are there variablesreferencedwhose values are not set or uninitialized?

. For all array references,is each subscriptvalue within the bounds of
the correspondingdimensionstatementdefinition?

. For all array references,does each subscripthave an integervalue?
(Not necessarilya defect in all languages.)

• For all referencesto storagearrays throughpointersor intermediate
referencevariables, is the referencedstoragecurrentlyallocated?

29

PNL-HEDR-CHK-COD

• When a storagearea has alias names with differingattributes (such as
EQUIVALENCE'dINTEGERand REAL arrays),does the data value in this area
have the correctattributeswhen referencedvia one of these names?
(Aliasingis a poor practiceand should be avoided.)

• Does a variable'svalue have a type or attributeother than that expected
by the programwhen used?

• Are there any explicitor implicitaddressingproblemson the machine
being used, for instance,if the units of storageallocationare smaller
(e.g., bits) than the units of storage addressability(e.g.,bytes or
words)?

• If a data structure (e.g.,array) is referenced in multiple proceduresor
subroutines,is the structuredefined identicallyin each procedure?

• When indexing into a string,are the limits of the string exceeded?

• Are there any "off by one" errors in indexingoperationsor in subscript
referencesto arrays?

• Is the format of the data being read from each file consistentwith that
of the data being written to that file?

• Are the number and type of variablesbeing read consistentwith that
written?

• Are all values properly stored after they are calculated?

• If a queue is being manipulated,can the executionbe interrupted;if so,
is the queue protectedby a locking structure?

• Can a queue be destroyedduring an interruptprocedure?

• Are all registersbeing restoredon exits from the interruptprocedure?

• Should any registersbe saved on entry to the interruptprocedure?

• Check that measures specifiedto provide consistencyin real-timeand
concurrentprogramsare actuallyemployedon shared resources in the
prescribedway.

• Are parametersused in the programdimensionallycorrect,and invoked in
proper calling sequences?

• Is scalingeverywhereproper to realizecorrect precisionand desired
results?

30

a

PNL-HEDR-CHK-COD

4. Data DeclarationConsiderations

• Have all variablesin the programbeen explicitlydeclared? (A failure
to do so is not necessarilyan error, but it is a common source of
trouble.)

• If all attributesof a variable are not explicitlystated in the
declarationstatements,are the defaultswell understood?

• Where a variable is initializedin declaration(DATA) statement,is it
properly initialized?

• Is the initializationof a variable consistentwith its storage type and
use?

• Are there any variableswith similarnames (e.g.,VOLT and VOLTS)? (This
is not necessarilya defect, but the names may be confused.)

• Are all variablesproperlyspecifiedand used?

• Are there any unused variables?

• Are dimensionsand subscriptsconsistentwith the array bounds?

• Are proper units used with each variable?

• Are labeledcommon variable names, type, locationand size of arrays
consistentthroughoutthe program?

• Are all constantsdefined as parameters?

• If characterstringsare created, are they complete?

• Is the data base structureas implementedself-consistentand
hierarchicalIy arranged?

5. ComputationConsiderations

• Are there any computationsusing variableshaving inconsistentattributes
or data types. (This kind of programmingwill inevitablylead to
portabilityproblems.)

• Are there any mixed-modecomputations? (e.g.,an example is the addition
of a floating-pointvariableto an integervariable. Not necessarilya
defect, but will lead to portabilityproblems.)

• Are there any computationsusing variableshaving the same data type but
differentbit lengths?

31

PNL-HEDR-CHK-COD

• Is the maximum permittedsize of the target variable in an assignment
statementsmallerthan the right-handexpression?

• Is an intermediateoverflow or underflowpossibleduring the computation
of an expression?

• Is it possible for the divisor in a divisionoperationto be zero?

• If the underlyingmachine representsvariablesin a base-2 format, are
there any consequencesof the resultinginaccuracyof decimal fraction
representation?

• Where applicable,can the value of a variablego outside its meaningful
or physical range?

• For expressionscontainingmore than one operator,are the assumptions
about the order of evaluationand precedenceof operatorscorrect?

• Are there any invaliduses of integerarithmetic,particularlydivision?

• Are the variouscalculationsand tasks defined properly?

• Are mixed mode expressionsclearly identifiedto eliminateunintentional
mixed mode errors?

• Are resultsof calculationscheckedto be reasonablevalues within the
design specification?

• Does code produce correctoutput for prescribedinputs?

• Are the arithmeticresultscorrectfor nominalconditions?

• Are the minimum and maximum inputsprocessedcorrectly?

• Are singularitiesand other conditionaloccurrencesof data processed
correctly?

6. ComparisonConsiderations

• Are there any comparisonsbetweenvariableshaving inconsistentdata
types (e.g.,comparinga real variable to a Hollerith string)?

• Are there any mixed-modecomparisonsor comparisonsbetween variablesof
differentlengths? If so, ensure that the conversionrules are well
understood.

• Are the comparisonoperatorscorrect? (Especiallysuch relationshipsas:
at most, at least, greaterthan, not less than, less than or equal.)

32

PNL-HEDR-CHK-COD

• Does each Booleanexpressionstate what it is supposedto state?

• Are the operandsof Booleanoperatorlogical variables?

• Are there any comparisonsbetween fractionalor floatingpoint numbers
that are representedin base-2 by the underlyingmachine? (This is an
occasionalsourceof errors becauseof the truncationand base-2
approximationsof base-t0numbers.)

• For expressionscontainingmore than one Booleanoperator,are the
assumptionsabout the order of evaluationand the precedenceof operators
cerrect? (Parenthesesshould always be liberallyused.)

• Does the way in which the compilerevaluatesBoolean expressionsaffect
the program? For instance,the statement"IF ((X.NE.O.).AND.
(Y/X.GT.Z))"is acceptablefor some Fortrancompilers (i.e., compilers
that end the test as soon as one side of an .AND. is false), but causes a
division by zero when compiledwith other compilerswhich do not.

• Is the correctconditionof the expressiontested (e.g., IF(X.EQ.TRUE)
versus IF(Y.EQ.FALSE))?

• Are null THEN's/ELSE'sincludedas appropriate?

• Is each branch of the target of IF/THEN'scorrect?

• Is the most frequentlyexercisedtest leg the THEN clause?

7. Control Flow Considerations

• If the programcontains a multi-waybranch (e.g., a computedGO TO in
Fortran),can the indexedvariableever exceed the number of branch
possibilities? Will every loop eventuallyterminate?

• Will the program,module, or subroutineeventuallyterminate?

• Is it possiblethat, becauseof the conditionsupon entry, a loop will
never execute? If so, does this representan oversight?

• For a loop controlledby both iterationand a Booleancondition (e.g., a
searchingloop),what are the consequencesof "loop fall-through"?

• Are there any "off by one" errors (e.g., one to many or too few
iterations)?

• Are there any nonexhaustivedecisions? (For instance,if an input
parameter'sexpectedvalues are 1,2, or 3, does the logic assume that it
must be 3 if it is not I or 2?) If so, is the assumptionvalid?

33

PNL-HEDR-CHK-COD

• Is the logic clearly understandable?

• Is the logical approachvalid?

• Is the logical approachunnecessarilycomplexor confusing?

• Is the program properly segmented?

• Are subroutinecalls properly formulated?

• Have all error conditionsbeen properlyprocessed?

• Are timing and resource allocationsproperlymechanized?

• Is task sequencingproper to mechanizethe function in correct execution
order?

• Are all incrementcounters properly initialized?

8. InterfaceConsiderations

• Does the number of parametersreceivedby a module equal the number of
argumentssent by each of the callingmodules? Is the order correct?

• Do the attributes (e.g.,type and size) of each parameter in the calling
routinematch the attributesof each correspondingargument in the
subroutine?

• Does the number of argumentstransmittedby this module to another module
equal the number of parametersexpected by that module?

• Does the units system of each argumenttransmittedto anothermodule -_
match the units system of the correspondingparameterin that module?

• If built-in functionsare invoked,are the number, attributes,and order
of the argumentscorrect?

• If a module has multiple entry points,is a parameterever referenced
that is not associatedwith the current point of entry? (Multiple
entries should in general be avoided.)

• Does a subroutinealter a parameterthat is intendedto be only an input
value?

• If global variablesare present (e.g."variableslisted in FortranCOMMON
statements),do they have the same definition and attributes? (Not
necessarilya defect, but a poor programmingpractice.)

34

PNL-HEDR-CHK-COD

• Are constantsever passed as arguments? (Not necessarilya defect, but a
poor programmingpractice.)

• Do all calls to a routine transferconsistentdata variables?

• Are the number of variablesand the type of each variablethe same in
both the callingand called routine?

• Are all the requiredparameterspassed correctly?

• If registerparametersare used, is the correct registernumber
specified?

• If interconnectionis a macro, does the in-lineexpansioncontain all
required code?

• Are there registeror storageconflictsbetweenmacro and calling
modules?

• If the interconnectionreturns,do all returnedparametersget processed
correctly?

• Are the interfacesbetweenroutines,and to external devices,well
designed and described?

g. INPUT/OUTPUTCon$ideration_

• If files are explicitlydeclared,are their attributescorrect?

• Are the attributeson the file OPEN statementcorrect?

• Does the format specificationagree with the informationin the I/O
statement?

• Is the size of the I/O area in storagegreaterthan or equal to the
record size?

• Have all files been opened before use?

• Are end-of-fileconditionsdetectedand handled correctly?

• Are I/O error conditionshandledcorrectly?

• Are there spellingor grammaticalerrors in any text that is printedor
displayedby the program?

• Are data input and output variablesdefined correctly?

• Are the readingand writing of I/O files clearly defined?

35

Q

PNL-HEDR-CHK-COD

• Is there satisfactoryinput error checking?

• Are external data files checked to assure that the correctdata file is
being read and the data is in proper format?

• Is invalidinput consideredand handled?

• Are all unique values explicitlytested on input parameters?

• Are all defaults explicitlychecked on input parameters?

10. Other Checks

• If the compiler produces a cross-referencelistingof identifiers,has it
been examined for variablesthat are never referencedor referencedonly
once?

• If the compilerproduces an attributelisting, have the attributesof
each variable been checked to ensure that no unexpecteddefault
attributeshave been assigned.

• If the programcompiled successfully,but the compilerproduced one or
more "warning"or "informational"messages,have they been examined?
Warningmessages are indicationsthat the compiler suspects that you are
doing somethingof questionablevalidity.

• Are there functionsmissing from the program?

• Are there any syntax errors?

• Are there compilerdiagnosticsor errors?

• Is the source code conciseand does it generate efficient,relocatable
machine code?

II. InternalDocumentationConsideration

A softwareproduct is self descriptiveto the extent that it containsenough
informationfor a reader to determineor verify its objectives,assumptions,
constraints,inputs,outputs, components,and revisionstatus.

• Does each programmodule contain a header block of comments which
describes: (I) programname, (2) effectivedate, (3) accuracy
requirements,(4) purpose, (5) limitationsand restrictions,(6)
modificationhistory, (7) inputs and outputs, (8) computationalmethods,
(g) major assumptions,(10) error recoveryproceduresfor all foreseeable
error exits that exist?

36

q

PNL-HEDR-CHK-COD

• Are decision points and subsequentbranchingalternativesadequately
described?

• Are the functionsof the modules as well as inputs/outputsdefined
adequatelyenough to allow module testing?

• Are the comments providedto support selectionof specific input values
to permit performanceof specializedprogram testing?

• Is informationprovidedto supportassessmentof the impact of a change
in other portions of the program?

• Is informationprovidedto supportidentificationof program code which
must be modified to effect a requiredchange?

• Where there is a module dependence,is it clearly specifiedby comments,
programdocumentation,or inherentprogram structure?

• Are variablenames descriptiveof the physical or functionalproperty
represented?

• Are adequatedescriptionsprovidedto allow correlationof variable names
with the physical propertyor entity which they represent?

• Do uniquely recognizablefunctionscontain adequatedescriptive
information(e.g.,comments)so that the purposeof each is clear?

• Are sufficientcomment statementsprovidedto give adequatedefinitionof
each routine?

• Are specialcoding featuressuch as mixed mode, word packing and non-ANSI
coding clearly identified?

• Is the programeasily readableand understandable?

• Are names contextuallyunderstandableand useful?

• Are any additionalcommentsneeded?

• Are there superfluouscomments?

• Are all assumptionsclearly stated?

• Are the source code and its descriptionsself-consistentand uniform?

37

PNL-HEDR-CHK-COD

D

12. STANDARDS.PROCEDURES.CONVENTIONSConsiderations

* Have the programmingconstraintsor requirementsset forth in the SRS, or
SDD been met, such as:
a. ProgrammingIanguage(s)used,
b. Use of existingcapabilities,
c. Compile-unitmodularization,
d. Reentrance considerations?

* Have that any project-specific standards identified in the SRS, SDP, and
Si)l) been verified, such as:

a. Regtster names, usage standards,
b. Hedule-to-sulxuodule] inking Ithods,
c. Definition of compiler parameters, literals, internal program

labels, and special storage structures?

* Have any functions been omitted, or have any extra functions been
inserted, except as necessary coding considerations to support the given
design?

* Is the software Coded in accordance with the Software Requirements
Specification (SRS)?

• Does the coding conform to ANSI standard coding language?

• Does the coding conform to companypr,,¢edures?

. Are standard indentation rules followed?

• Are standard constructs implemented properly (e._. CASE)?

• Is the documentation of the code complete, descriptive, consistent, and
conform to applicable staadards?

- Does the software showmodularity and simplicity?

• Is the source code maintainable, usable and reliable, in terms of:
- structure,
- consistency,
- expandabil ity/modifiability
- testabilIty,
- device independence,
- self-contained,
- robustness/intngrity,
- accessibility?

• Is the softwareconsistent internallyand with earlier baselines?
- Is the coding logicallyconsistentwit),the design specifications?
- Does error detectionresult in consistenterror messages and
recovery?

38

PNL-HEDR-CHK-COD

• Does the code take the same modularform as the design, except as
provided for in specialprogrammingstandardsor waivers?

• Are coded modules properlycross-referencedto the design'and annotated
so as to make clear that the code does, in fact, match the design,box
for box, on the structurechart (or equivalent)?

• Inspectthe explanatorydocumentationprovidedin supportof bridging the
design to the code, such as:

a. Cross-reference lists charts, or equivalent.
b. Index-register usage tables or standards.
c. Glossary of specialvariablesor literals not in the design and

not easily defined by name or use context.
d. .M_moryuse map.
e. Timing diagrams.
f. Interrupt-handlingproceduresand relationships.
g. File, table, and data set descriptions.
h. Examplesof input and associatedoutput.
i. Listingof special flags,pointers and other indicatorstogether

with the usage (which routines,areas or times of applicability).
j. Commentarydescribingfeaturesof code that link performanceto

design documents.
k. Lists of error conditions,codes, and messages, cross-referenced

to both the design charts and the code itself.
I. Restrictionson the use of code that is particularlysensitiveto

changesin design (mainlytime and memory space, but also
functionallimits to subroutines,etc.).

m. Data usage, such as shared public files versus restricted-access
files.

n. Hardwa,'eor softwareconstraints.
o. Use of privilegedinstructions?

39

I _IJ,

