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ABSTRACT

The important contributions of doubly excited
autoionizing states to electron-impact excitation,
ionization, and recombination are reviewed. Various
theoretical methods of treating these states are
considered, and theoretical cross sections are
presented and compared to experimental measurements
where available.

1 . INTRODUCTION

Doubly excited states play a major role in electron-

ion collisions. If such states are above the first

ionization limit of an N-electron ion, they interact with

the adjacent continuum and can decay by the de-excitation

of one electron and the simultaneous ejection of a second

electron, resulting in the production of an (N-1)-electron

ion. However, in addition to this process of

autoionization, they can also decay to a bound state of the



N-eiectron ion, with the emission of a photon.

They may be populated from .the N-electron ion by the

excitation of an inner-shell electron or the excitation of

two valence-shell electrons, or from the (N-1)-electron ion

by the excitation of one bound electron and the

simultaneous capture of a free electron. We refer to this

last process as resonant recombination; it is just the

reverse of autoionization. These processes, which are part

of the indirect mechanisms in electron impact-excitation,

ionization, and recombination, are depicted schematically

in Fig. 1 -

X(Z.N) X(Z.N-1)

Fig. 1. Schematic drawing showing the population and
decay of a doubly excited state of an ion X(Z,N) with
atomic number Z and N electrons. It can be populated
by excitation (E) of the N-electron ion or resonant
recombination (RR) from the (N-1)-electron ion, and
can decay by autoionization (AI) or radiative decay
(RD).

Since these doubly excited states are coupled to the

adjecent continuum, and through the continuum to each

other, one should properly treat such processes by



constructing a wavefunction which is some linear

combination of 6tates consisting of N bound orbitals with

states consisting of N-1 bound orbitals and one continuum

orbital. However, in many cases, one can employ an

independent-processes model and treat the interaction with

the continuum using perturbation theory.

2. ELECTRON-IMPACT EXCITATION

The contribution of doubly excited autoionizing states

to electron-impact excitation can be included in a very

natural way through the use of the close-coupling

approximation. One begins by obtaining a set of bound-

state eigenfunctions and eigenvalues which describe the

target states of an (N-1)-electron ion

HN_1xi(x1 xN_t) = Eixi(xt x N_i), (1)

where x-j denotes the space and spin coordinates. The

radial wavefunctions for the bound-state orbitals can be

obtained from the Hartree-Fock approximation, and the

energy eigenvalues, E-j , and the eigenvectors, xi , are

determined by diagonalizing the Hamiltonian matrix for the

(N-1)-electron system including the effects of configura-

tion interaction.

The wavefunction for the N-electron collision problem

is then constructed from vector-coupled antisymmetized

products of the (N-1)-electron wavefunctions with a spin-

orbital of the form

x) = Yiimx_(r)6(inSi,«Fi) £ F ^ r ) , (2)

where Yj m is a spherical harmonic, a is a spin coordinate,

and F^(r) describes the radial part of the wavefunction for



the N'th electron when the ion is in the state i.

For atomic systems with low Z, we can ignore the spin-

orbit interaction, as well as other relativistic effects,

and the conserved quantum numbers are (LSB), where L is the

total orbital angular momentum, S is the total spin angular

momentum, and f is the parity of the N-electron system.

The state i of the (N-1)-electron ion in LS-coupling is

specified by the quantum numbers ffliMS-jM(.Ms • , where a-j

represents all other quantum numbers needed to completely

specify the state. One then forms wavefunctions for each

channel, i, from the vector-coupled antisymmetrized product

functions

mSi| xN) , (3)

where A is the operator that antisymmetrizes the total

wavefunction.

In the close-coupling (CC) approximation, the total

wavefunction is taken to be a finite expansion over the

wavefunctions for each channel

= 2̂JUi X N) = ) Vi . (4)

In the most widely used formulation of the CC

approximation, one also explicity includes a set of N-

electron bound-state functions in the above expansion.

These so-called correlation functions are necessary to

remove a constraint on the total wavefunction if one

insists on orthogonality between the bound-state radial

functions and the radial function F-j(r). However, for

simplicityB we will consider the form of the CC equations



when one does not impose this condition.

Application of the vanational principle leads to a

set of coupled differential equations, which in atomic

units are of the form

2 * l l * l T 1 J 7

-r + ^ n + Vi H -2TP 1 1

+ ) VijFji' (r) = 0, (5)

j* i

where we now employ a double index on the radial function

F-j-j'(r) to denote the incident channel i , and the channel

index i now signifies the collection of quantum numbers

a-jL-jS-jk-ji-j LSr. The potential function V-jj contains both

direct and exchange electrostatic terms, as well as

exchange overlap terms which arise because of the non-zero

overlap between the bound orbitals and the radial functions

F-j-j'(r) with the same orbital angular momentum.

For open channels for which k-j2 > 0, the asymptotic

form of the radial wavefunction may be written in the form

'(r>r-.«> ~ -== [ H i ' sin kix + Ri i ' cos k,x ] , (6)ii

where k,x = k-j r-x, «/2+(z/k-j )ln(2k-j r)+argr[*^ + 1-i (z/k-j )],

with z=Z-N+1, is the asymptotic phase of the regular

Coulomb function, and R-j-j' is an element of the reactance

matrix R. For closed channels with k-j2 < 0, we require

that F-j-j'(r) —> 0 as r—• m.

The cross section for the excitation a-j L-j S-j —•

in atomic units is given by



T f l I 2 , (7)
LSI,If

where Tf-j is an element of the transition matrix T, which

is related to the reactance matrix R by the equation

T - - iR)

For initial electron energies where both open and

closed channels are included in the wavefunction expansion,

we obtain Feshbach or closed-channel resonances. For

example, consider the idealized system shown in Fig. 2 with

the (N-1)-electron ion initially in the ground state i.

The incident electron energy e-j is such that channels

associated with level f are open, but those associated with

level c are closed. The incident electron can be captured

(resonant recombination) into the doubly excited

autoionizing state j consisting of a Rydberg electron

attached to the (N-1)-electron core in level c. This state

can: (1) autoionize to the initial state i, and we have a

resonance in the elastic cross section; (2) autoionize to

the excited state f, with the emission of an electron of

energy cf, and we have a resonance in the excitation cross

section; or (3) it can radiatively decay to a bound state b

and contribute to the recombination (dielectronic) cross

section. In order to include this last process, which of

course reduces the size of the resonance contributions to

the scattering cross sections, the interaction with the

radiation field would have to be included in the close-

coupling formalism.

Resonances can make significant contributions to the

excitation cross section. For example, the cross section

resulting from a 6-state (4s, 3d, 4p, 5s, 4d, 5p) close-

coupling calculation1) for the transition 4s—«3d in Ca+ is
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Fig., 2. Schematic drawing of an idealized resonant
system. The initial electron with energy e-j=k-j2/2 can
be captured (RR) into a doubly excited state j. This
state can then autoionize to the initial state i
[AI-j], or the excited state f [Alf] (ejecting an
electron of energy £f=kf!/2); or radiatively decay
(RD) to a bound state b.

shown in Fig. 3. Resonances, especially from the doubly

excited states of the type 4pni, dominant the cross section

for incident electron energies between the 3d and 4p

thresholds.

As the net ionic charge increases, the spin-orbit

interaction becomes large, and the LS representation is no

longer valid. The close-coupling approximation must then

be formulated in terms of channels associated with

individual intermediate-coupled levels, rather than LS

terms. For a complex ion there may be a large number of

levels which should be included in a single calculation,

and solving the coupled equations becomes a formidable

task. However, for many cases in highly ionized species,

the coupling between open channels is weak,2) and one is

justified in employing the much simpler distorted-wave (DW)



Fig. 3. The excitation cross section (in units of
• a 0

2) for the 4s—»3d transition in Ca+ from a 6-state
close coupling calculation.*) The 3d threshold is at
.125 rydbergs and the 4p threshold, at .231 rydbergs,
is indicated by the small arrow along the energy axis.

approximation to determine the direct-excitation cross

section. We drop all potential terms V^j with i'j in Eq.

(5) and solve the DW differential equation

1 *L
2 dr' IF1

- -o fi(r) = 0 (9)

where the asymptotic form of the radial wavefunction,

fi(r), is

f i ( r )
 r~ (10)

and where 6-j is the distorted-wave phase shift. The cross

section for the transition <*\J-\—>«fJf between two levels of

total angular momentum J-j and Jf is given by



) i pfi i 2 . (11)

JiJf

where J is the total angular momentum of tha N-electron

system, j-j=*-j*1/2, jf=*f*1/2, and pf-\ is an element of the

p matrix, with off-diagonal elements given by

Pfi = ff(r)Vfifi(r)dr , (12)

and diagonal elements equal to zero.

Although, for highly ionized species, continuum coup-

ling may have a small effect on the direct-excitation cross

section, the contribution of resonances to the total-

excitation cross section is still quite important. Thus it

would be advantageous to include the effects of resonances

within the distorted-wave formalism. If the coupling of

the resonances to the adjacent continuum is relatively

weak, we can impose the independent-processes approxima-

tion, and use perturbation theory to show that the total

cross section from a level i to a level f is given by

i—f) + I » r d - J ) B a ( j — f ) , (13)

where a,j( i—-f) is the direct-excitation cross section from

level i to level f, calculated from Eq. (11); cr(i—• j) is

the resonant-recombination cross section from level i of

the (N-1)-electron ion to the doubly excited level j of the

N-electron ion; and Ba(j—>f) is the branching ratio for

autoionization from level j to level f. Ba(j—>f) is given

by the equation



n

where Aa(j—-k) is the autoionizing rate from level j to a

lower level k of the (N-1)-electron ion, and Ar(j—-n) is

the radiative rate from level j to a bound level n of the

N-electron ion.

By the principle of detailed balance, the resonant-

recombination cross section from level i to level j,

averaged over a narrow energy bin, can be written in terms

of the rate for the reverse process of autoionization from

level j to level i as

where J-j and Jj are the total angular momenta of levels i

and j, respectively, and Ac is an energy bin width larger

than the largest resonance width. The autoionizing rates

are calculated using distorted-wave continuum functions and

the autoionizing and radiative rates necessary for the

determination of resonant contributions from high Rydberg

states are found by extrapolating calculated rates.

This formalism was first used by Cowan3) to determine

the resonant contributions to the (2e*)lS —• (2s2p)aP

excitation in O4+. He obtained good agreement with close-

coupling calculations. Since then, it has been used to

determine the resonant contribution to excitation for a

number of highly ionized systems. For example, we employed

this method4) to estimate the resonant contribution from

doubly excited states of the form 2p53pnA, 2ps3dn4, and

2P S414JS' to the relatively weak transition 2p6 — 2ps3s in

Ti 1 2 +. The results are shown in Fig. 4, where the indirect

cross sections, averaged over a narrow energy bin Ac, were



convoluted with a gaussian distribution function typical of

experimental electron distributions. Obviously, the

resonant contributions dominate the cross section.
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Fig. 4. Electron-impact 2p6 — 2p53s excitation cross
section of Ti l 2 +. The solid curve, hardly visible on
the scale of the graph, is the direct-excitation cross
section, while the dotted curve is the sum of the
direct and indirect cross sections.

3. ELECTRON-IMPACT IONIZATION

We now consider the electron-impact ionization of an

N-electron ion X(Z,N). The direct-ionization process is

e" + X(Z,N) X(Z,N-1 ) + e (16)

However, in addition, we can have the indirect processes of

inner-shell excitation followed by autoionization

e" + X(Z,N) > X(Z,N)*® t- e~

X(Z,N-1 (17)



resonant recombination to a doubly excited state of the

(N+1)-electron ion followed by the sequential auto-

ionization of two electrons

X(Z,N) > X(Z,N+1)**

X(Z,N)** + e"

I » X(Z,N-1) + e~ ; (18)

u

and resonant recombination followed by the simultaneous

autoionization of two electrons

e~ + X(Z,N) > X(Z

' > X(ZrN-1) + e" + e~ . (19)

The double asterisk in the above equations denotes a doubly

excited autoionizing state.

For now we consider only the first two processes of

direct ionization and excitation autoionization. If one

employs an independent-processes approximation, the total

ionization cross section from an initial configuration i is

given by

+ I *exc(i—J)Bj . (20)
j

where «ion(i—•"•*) ">s tSie distorted-wave direct-ion ization

cross section from the initial configuration i to the final

configuration f of the (N-1)-electron ion, and "exc^i—* J)

is th© distorted-wave inner-shell excitation cross section

from configuration i to a particular doubly excited level

j. Bj "*s t n s branching ratio for autoioni zation to all

lower levels of ths (N-1)-electron ion, which is given by



I AaU—k)
k

j — k ) + I Ar(j — n) *
n

There is a particular difficulty with the calculation

of the di rect-ioni zation cross section c-jont''—"f) which is

important to mention. It is associated with the fact that

the final state involves two free electrons in the field of

an ion, which is a problem in many-body theory that has not

yet been solved in a manner suitable for practical

calculations. In the distorted-wave approximation, it is

assumed that each of two electrons experiences a spherical

potential at infinity; thus, the phase between the two

electrons is lost, and the relative phase between the

direct and exchange terms within the cross-section formula

is unknown. We employ the minimum-phase approximation of

Peterkop5) which amounts to squaring the difference between

the absolute values of the direct and exchange amplitudes;

this leads to maximum destructive interference and seems to

give the best agreement with experiment.

We have performed numerous calculations of total-

ionization cross sections for highly ionized species using

this approximation. However, in principle, one should

include the possible quantum mechanical interference

between direct ionization and excitation autoionization.

Jakubowicz ' and Moores6) have developed a method of doing

this by using either Coulomb or distorted waves to repre-

sent the scattered electron, but close-coupling wave-

functions to describe the N-electron target states, before

and after the collision. In this way, they include the

interaction between the doubly excited autoionizing states

and the adjacent continuum explicitly. However, the good

agreement between calculations performed using this

method''' with those performed using the independent-



processes approximation**) seems to indicate that

interference between direct iqnization and excitation

autoionization has a small effect on the total-ionization

cross section.

Excitation autoionization can dominate over direct

ionization, even for highly ionized species. For example,

consider ionization of Na-like ions from the 2p63s ground

state. In addition to direct ionization out of the 3s, 2p,

and 2s subshells, we can have indirect contributions from

inner-shell excitation to doubly excited configurations of

the type 2s22ps3sni and 2s2p63sn*. Calculations for the

ions T i l l + , Cr l 3 +, Fe 1 5 +, and Ni l 7 + using the independent-

processes approximation9) indicate that the excitation-

autoionization contributions enhance the total cross

section near threshold by nearly a factor of five, in

agreement with cross~beam measurements for the first three

of these ions.10.11)

In Fig. 5, we show the calculated9) and measured11)

u
0.0

200.0 -400.0 600.0 800.0
Energy (eV)

1000.0

Fig. 5. Calculated ion\zation cross section for
Ti l l +. Solid curve, total-ionization cross section;
dashed curve, direct-ionization contributions only.
Experimental points are from Ref. 11.



cross sections for Ti l l +. Ths overall agreement between

experiment and theory is good; however, the data points are

clearly above the calculated cross section in the energy

range from about 550 eV to 610 eV. This may indicate the

formation of recombination resonances of the type

2s:2ps3snln'i' and 2s2p63sn*njl' in Ti 1 0 +, which can auto-

ionize sequentially with the emission of two electrons to

Ti'2+ (see Eq. 18).

In the independent-processes approximation, the cross

section for this process of resonant recombination double

autoionization (RRDA) is given by

"rrda - - ard—J)3j » <22)

where »r(i—>j ) is the resonant-recombination cross section

from level i of the N-electron ion to a particular doubly

excited level j of the (N+1)-electron ion (Eq. 15). Bj a is

the branching ratio for double autoionization, which is

given by

— d )

I A a(j—k) + 1 A r(j—n)
L k n

I A a(d—f)
f (23)

m

where the first term inside the square brackets is the

branching ratio for autoionization to a particular doubly

excited autoionizing level d of the N-electron iun; the

second term is the branching ratio for autoionization from

the level d to any lower level of the (N-1)-electron ion;

and finally, the sum over k in the first term includes

autoionization to all lower levels of the N-electron ion,



botn auto ionizing and bound.

Because of the extremely large number of levels

involved in the determination of the double autoionization

branching ratios, such a calculation for a case like that

of T i l l + becomes very difficult to perform, even at this

level of approximation. 'aGattuta and Hahn1^) employed

average rates between configurations, rather than between

individual levels, to obtain an estimate for RROA in Na-

like Fe 1 5 +, but comparison with experiment10) indicates

that this method far over estimates the contribution of the

resonances. Chen and Reed1**) have just completed a very

large calculation of the RRDA process for Fe i S + between

the individual levels, and they find that the size of the

resonance contribution to the ionization cross section

agrees well with the experimental measurement.10)

Now consider the resonant-recombination process

followed by the simultaneous emission of two electrons (Eq.

19). We shall refer to this as resonant recombination

auto-double ionization (RRAD). The cross section for RRAD

is given by

Trad = I »r(i—J)Bj d, (24)
j

where Bj is the branching ratio for auto-double ionization

I Aad(j-* f)
Rad _ f (9-*

J ~ X Aad( j—f) + 5; Aa(j—k) + I A r(j—n) ' l * O J

f k n

and where Aa(j(j—»f) is the auto-double ionization rate from

the doubly excited level j the (N+1)-electron ion to level

f of the (N-1)-electron ion.

Auto-double ionization is strictly an electron-

electron correlation effect, since it involves de-

excitation of one electron and the simultaneous ejection of



two electrons. We have used many-body perturbation theory

to estimate the contribution of RRAD to the ionization

cross section of Li-like ions.14) In particular we

considered the the RRAD process

e~ + 1s22s > (1s2s22p)3P > 1s2 + e~ + e~ . (26)

The (1s2s22p)3P term of the corresponding Be-like ion was

chosen because there exist no open channels for sequential

double autoionization, and because of its relative

simplicity. The term (1s2s22p)lP was not included because

it has a very small resonant-recombination cross section.

The auto-double ionization rate was calculated in

lowest-order perturbation theory by summing up over a large

number of continuum and bound intermediate states. As in

the case of direct ionizat?on, the final state involves two

continuum electrons, and the phase between the direct and

exchange terms is unknown. In order to obtain a range of

possible rates, we used a set of different phase choices.

The minimum rate was obtained by using the minimum-phase

approximation, similar to that used in direct-ionization

calculations, in which one squares the difference between

the absolute values of the direct and exchange amplitudes.

The maximum rate was obtained by employing the maximum-

phase approximation, in which one squares the sum of the

absolutes values of the direct and exchange amplitudes.

Although our calculations indicated that the

contribution from this RRDA process should be a maximum of

only 0.64% of the direct ionization cross section in C3+,

the resonant contributions from the terms (1s2s22p)3P and

(1s2s2p2)3D to the ionization cross section of this ion

were recently measured by Miiller et al. at Giessen.^)

Their measured cross section for the (1s2s22p)3P resonance

was 1.1X10~20 cm2, while our calculated cross section was

0.96x10"20 cm2 using the minimum-phase approximation and



1.7x1O~2Q cm 2 using the maximum-phase approximation.

Muller et al. 1 6) have just completed an experiment on

the ionization of !_i+, in which they observed the indirect

processes of double excitation followed by autoicniation

1s Li+(2X2l')

Li 2 1s) e- (27)

and double excitation with resonant recombination followed

by auto-double ionization

e Li(2l*2*') Li 2 + (1s) + e~ + o" . (28)

Shown in Fig. 6 is the total-ionization cross section,

minus the background direct-ionization cross section, from
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Fig. 6. The data points from Muller et al.16) show the
total-ionization cross section minus the direct-
ioni zation cross section for Li+ in the energy range
where indirect processes contribute. The solid curve
is the cross section for the 1s2 —. 2*2*' double exci-
tation from an 11-state close-coupling calculation.
The positions of the (2s22p)JP and (2s2p2)5D terms of
Li are from Ref. 16, while the positions of the doubly
excited 6tates of Li+ were obtained from Hartree-Fock
calculations with configuration interaction.



this experiment in the energy range where tnese indirect

processes contribute. The shape of the curve where the

recombination resonances (2s22p)2P and (2s2p2)2D can be

populated indicates strong interference with the direct-

ionization background. A theoretical description of the

interference between these processes involving a double-

electron continuum has not yet been worked ojt; however,

the shape of the curve closely resembles the familiar Fano

profile, even though Fano theory1?) applies only to a

doubly excited state interfering with a single-electron

continuum.

In order to investigate the process of double

excitation followad by autoionization (Eq. 27), we

performed an 11-state close-coupling calculation [(1s2)lS,

(1s2s)3S, (1s2s)lS, (1s2p)3P, (1s2p)lP, (2s2)lS, (2s2p)3P,

(2s2p)lP, (2p2)3P, (2p2)1D, and (2pa)lS] of the cross

section for the 1s2 -— 2X2*' double excitation. The 1s

orbital, was obtained fron a Hartree-Fock calculation of

the 1s2 configuration, while the 2s and 2p orbitals were

from Hartree-Fock calculations for the 1s2s and 1s2p

configurations, respectively. Although, these particular

2s and 2p orbitals were used in performing the close-

coupling calculations, they give poor energies for the

doubly excited terms; therefore the positions of these

terms were determined from a configuration-interaction

calculation using 2s and 2p orbitals obtained from Hartree-

Fock calculations for the 2s2 and 2p2 configurations. The

close-coupling calculations were carried out using the

program IMPACT.18) The branching ratios for autoionization

to the 1sk* continui"n for these doubly excited states are

equal to one.

The results of this calculation are shown by the solid

curve in Fig. 6. The magnitude of the calculated cross

section is in reasonable agreement with the experiment

above the last doubly excited state. However, the shape of



the calculated cross section, near the excitation

threshold, is quite different from the measurement. In

addition the calculation includes contributions from

recombination resonances of the type 2i2i'ni", which may,

or may not, contribute to the ionization cross section,

depending on the branching ratios for double autoionization

(Eq. 23). Thus, a great deal more work will be required to

properly treat this process. Obviously, these new

ionization experiments are severly testing the current

state of electron-ion collision theory.

4. ELECTRON-IMPACT RECOMBINATION

Finally we consider the recombination of free

electrons with an (N-1)-electron ion. The first process

is three-body recombination

6~ + e~ + X(Z,N-1) > X(Z,N) + e" . (29)

I t is just the reverse of electron-impact ionization, and

due to i ts relatively low probability, i t is only important

at high electron densities. Next we have radiative

recombination

e" + X(Z,N-1) > X(2,N) + h« . (30)

This is just the reverse of photoionization, and it

dominates the recombination cross section at relatively low

electron energies; however, its importance decreases

rapidly with energy. Finally, we have the indirect process

of dielectronic recombination (DR)

e" + X(Z,N-1) > X(Z,N)** > X(Z,N) + hu . (31)

This process involves resonant recombination to a doubly



excited state of the N-electron ion followed by radiative

decay to a bound state. Of cogrse, the doubly excited

state can also autoionize and provide a resonance

contribution to the elastic or excitation cross section of

the (N-1)-electron ion. DR is the dominant recombination

process at relatively high energies, and we shall now

consider it in more detail.

In principle, radiative recombination and dielectronic

recombination can interfere. A formalism to treat such

interference has been developed;19) however, model

calculations20^ indicate thai this will have a negligible

effect on the total cross section. Furthermore, Bell and

Seaton^i) have developed a coupled-channel formalism for

DR, based on quantum-defect theory, which properly includes

the interaction of the doubly excited states with the

adjacent continuum, and with each other. However, the

majority of calculations have been performed using an

independent-processes approximation, and a comparison of

results obtained with these two methods seems to indicate

that the effects of overlapping, interfering resonances on

the total-OR cross section are small.

In the Isolated-resonance approximation, the OR cross

section from an initial level i of the (N-1)-electron ion

is given by

*dr(i) = I »r(1—J)Bj (32)
j

where again, or(i—- j) is the resonant-recombination cross

section to a doubly excited level j of the N-electron ion.

Bj is the branching ratio for radiative decay to a bound

state of the N-electron ion. It is given by

m



where the sum over n is over all lower bound levels of the

N-electron ion, while the sum over m is over all lower

levels of the N-electron ion, bound and autoionizing.

As an example let us consider dielectronic

recombination associated with the 2s —-2p excitation in Li-

like C 3 +

C3 + (1s22s) > C2 + (1s22pni) —> C2 + (1s22sni)

' > :s'(is!2pn'i') + !

ho

(34)

The radiat^"'2 transitions involving the Rydberg electron

(ni—ni') can dominate for low Rydberg states, but their

importance falls off rapidly with the principal quantum

number n. On the other hand, the radiatve rates for the

transitions involving the core electron (2p—>2s) are nearly

independent of the Rydberg electron. An energy-level

diagram for this system is shown in Fig. 7.

Fig. 7. An energy level diagram illustrating several
DR transitions associated with the 2s—>2p excitation
in C 3 +. A schematic diagram of the DR cross section
resulting from transitions through the 2p4d, 2p5d, and
2p2OJ configurations of C 2 + is inset on the far right.



The low lying resonances such as 2p4d have relatively

large cross sections because of the size of the radiative

rates for transitions in which the Rydberg electron is the

active electron; however, these resonances are rather

widely spaced. On the other hand, the cross sections for

the closely spaced high Rydberg states are smaller, but

they continue to contribute to the cross section until we

reach rather high values of the principal quantum number,

n, where the resonant-recombination cross section (which

falls of approximately as 1/n3) becomes so small that the

states become essentially closed to recombination. Thus,

the DR cross section associated with such An = 0 excita-

tions are dominated by high Rydberg states.

External electric fields can have a pronounced effect

on dielectronic recombination- First of all such fields

can ionize electrons in high Rydberg states, and thereby

decrease the DR cross section. Secondlyt fields mix high

Rydberg states with different values of the orbital angular

momentum 1. The resonant recombination cross section is

high for small values of 4 and small for high values of I,

and in the absence of a field, the high angular momentum

states are essentially closed to recombination. However

external fields mix these states in such a way as to open

up more channels for recombination and thereby enhance the

cross section.

In DR experiments, the fields in the interaction

region are* relatively small, while the fields in the

analyzing region are very large, typically of the order of

10 kV/cm. Thus the smaller fields in the interaction

region enhance the DR cross section, and then after

recombination has occurred, the fields in the interaction

region strip off the high Rydberg states.

The amount of field ionization can be determined by

employing hydrogenic field-ionization formulas such as the

one developed by Damburg and Kolosov.22) However, a much



simpler method to estimate the effects of field ionization

is to assume that states rapidly ionize for all values of

n>n m, where the cutoff, n m, is given by the serciclassical

formula

f 6.2 x IP3 , 11/4 . .

nm = [ 1 q j , (35)

where E is the electric field in V/cm and q is the charge

of the ion before recombination. It has been found that

the cutoff determined from this formula agrees closely with

with the value of n for which the hydrogenic formulas

predict a very rapid increase in the rate of field

ion jzation.23)

We determine the effects of field mixing in the

interaction region by employing eigenvectors for the doubly

excited states which are obtained by diagonalizing a

Hamiltonian matrix that includes the stark matrix elements

as well as the internal electrostatic and spin-orbit terms.

Finally, the DR experiments do not measure the cross

section, but rather the product of the electron velocity

and the cross section convoluted with an electron velocity

distribution function - a sort of rate coefficient which is

a function of electron energy. Thus we combine our cross

section with the experimental velocity distribution to make

a theoretical prediction of the measurement.

The first DR measurements on a series of Li-like and

Na-like ions were done by Dittner et al. at ORNL.2*»25) In

this 6et of experiments, the field in the interaction

region was expected to be about 30 V/cm. Although the

agreement between experiment and our theoretical calcula-

tions26) was quite good for the Na-like ions,24) the

measured rates were larger than the calculated rates for

the Li-like ions (including the C 3 + case considered above)

even for the maximum field enhancement of the theoretical



cross sections.2^) Furthermore, the velocity distribution

in thesa experiments was sufficiently wide that, a compari-

son between experiment and theory was impossible for low

Rydberg states, which are not affected by electric fields.

Andersen and Bolko have now completed measurements of

OR for C 3 + and 0 5 + using the Aarhus EN-tandem accelerator

and a beamline equipped with an electron cooler.27) The

electric field in the interaction region is expectod to be

less than 5V/cm and the electron distribution is very

narrow, so that individual low Rydberg states are resolved.

Their measurements for C 3 + in comparison with our most

recent calculations for various small fields in the

interaction region28) are shown in Fig. 8. As can be seen,

the agreement between experiment and theory in the region

of the high Rydberg states for energies between 7.0 and 8.0

eV is excellent for a field of about 3 V/cm. However, the

0.0-
0.0 2.0 4.0 6.0 8.0

Energy (eV)
10.0

Fig. 8. Theoretical DR rate coefficients for C 3 + (as
measured in the Aarhus electron-ion merged-beam
experiment) as a function of electron energy. ......
E = 0 V/cm; - - - E = 1 V/cm; -• E = 3 V/cm;

E = 5 V/cm. The calculations include all
resonances up to and including n m = 35. The experi-
mental points are from Ref. 27.



calculated rate for the peak between 0 and 0.6 eV, which is

due to the 2p4d and 2p4f resonances, is nearly twice the

measured rate. Since the cross section for resonant

recombination varies as the inverse of the electron energy

(see Eq. 15), and these resonances lie so close to zero,

this discrepancy is most likely due to errors in the

calculated positions of the doubly excited levels for these

configurations. The agreement with experiment for 0 5 + is

not quite as good, but still very reasonable.27,28)

Additional experiments using electron coolers and ion

storage rings are now being planned for more highly ionized

species, and they will provide further tests of our

understanding of electron-ion recombination.

5. CONCLUSIONS

Doubly excited autoionizing states play an extremely

important role in electron-ion collisions. They are popu-

lated as intermediate states during electron-impact excita-

tion, ionization and recombination. They are included in a

natural way when one employs close-coupling wave functions,

but in many cases, the independent-processes approximation

provides a reliable means for determining total cross

sections* However, as more sensitive electron-ion

collision experiments are developed, more interference

effects between channels will be detected, and theoretical

methods wh'ich include the interaction between the doubly

excited states and the adjacent continuum will be neces-

sary.

6. ACKNOWLEDGMENTS

We wish to thank D. C. Gregory for providing us with

his data on the ionization of T i 1 1 + prior to publication,

A. Miiller for providing us with his data on ionization of



Li+ prior to publication, and L. Andersen and J. Bolko for

furnishing us with the.« data on DR for C 3 + and 0 5 + prior

to publication. Conversations with M. H. Chen and K. J.

Reed regarding the calculation of resonant recombination

double autoionization in Fe i s + are also gratefully

acknowledged. This work was supported by the Office of

Fusion Energy, U. S. Department of Energy, under Contract

No. DE-AC05-84OR21400 with Martin Marietta Energy Systems,

Inc. and Contract No. DE-FG05-86ER53217 with Auburn

Universi ty.

REFERENCES

1. Mitroy, J., Griffin, D. C., Norcross, D. W., and

Pindzola, M. S.» Phys. Rev. A38, 3339 (1988).

2. Pindzola, M. S. and Griffin, D. C. , Phys. Rev. A39,

2385 (1989).

3. Cowan, R. D. , J. Phys. B_13, 1471 (1980).

4. Pindzola, M. S., Griffin, D. C , and Bottcher, C ,

Phys. Rev. A32, 822 (1985).

5. Peterkop, R. K., Zh. Eksp. Teor. Fiz. 41., 1938 (1961)

[Sov. Phys. - JETP 14, 1377 (1962)].

6. Jakubowicz, H. and Moores, D. L., J. Phys. B14. 3733

(1981 ).

7. Moores, D. L. and Reed, K. J., Phys. Rev. A39, 1747

(1989 )'.

8. Pindzola, M. S., Griffin, D. C. , and Bottcher, C ,

submitted to Phys. Rev. A (1989).

9. Griffin, D. C. , Pindzola, M. S., and Bottcher, C ,

Phys. Rev. A3J5, 3642 (1987).

10. Gregory, D. C , Wang, L. J., Rinn, K., and Meyer, F.

W., Phys. Rev. A35, 3256 (1987).

11. Gregory, D. C., Wang, L. J., and S. Chantrenne, private

commun i cati ons.



12. LaGattuta, K. J. and Hahn, Y., Phys. Rev. A24. 2273

( 1981 ) .

13. Chen, M. H. and Reed, K. J., private communication.

14. Pindzola. M. S. and Griffin, D. C , Phys. Rev. A36,

2628 (1987).

15. Muller, A., Hoffmann, G., Tinschert, K., and Salzborn,

E., Phys. Rev. Letts., 61, 1352 (1988).

16. Muller, A., Hofmann, G. , Weissbecker, B. , Stenke, M.,

Tinschert, K., Wagner, M., and Salzborn, E., private

commun i cat i on.

17. Fano, U., Phys. Rev. 124, 1866 (1961).

18. Cress, M. A., Seaton, M. J., and Wilson, P. M. H.,

Comput. Phys. Commun. 15, 23 (1978).

19. Alber, G., Cooper, J., and Rau, A. R. P., Phys. Rev.

A30. 2845 (1984).

2C. Griffin, D. C. and Pindzola, M. S. , Phys. Rev. A35.

2821 (1987).

21. Bell, R. H. and Seaton, M. J., J. Phys. B18. 1589

(1985).

22. Damburg, R. J. and Kolosov, V. V., J. Phys. B12. 2637

"(1979).

23. Bottcher, C., Griffin, D. C., and Pindzola, M. S.,

^hys. Rev. A34, 860 (1986).

24. Dittner, P. F., Datz, S., Miller, P. D., Pepmiller, P.

L., and Fou, C. M., Phys. Rev. A33. 124 (1986).

25. Dittner, P. F., Datz, S., Miller, P. D., Pepmiller, P.

L., and'Fou, C. M., Phys. Rev. A35. 3668 (1987).

26. Griffin, D. C. , Pindzola, M. S., and Bottcher, C.,

Phys. Rev. A33, 3124 (1986).

27. Andersen, L. H. and Bolko, J., submitted to Phys. Rev.

A {1989 ) .

28. Griffin, D. C., Pindzola, M. S., and Krylstedt, P.,

submitted to Phys. Rev. A (1989).


