*Joa13y) AsusBe Lue 1o WWIWUIA00) SNBIS paju)

passaidxo siopne jo suopuido pue
S panun) sy 4q Jutioary 1o ‘uonepusw

A Jo asoyl 1d[J1 Jo MES AJUIRSSIIU Jou Op UlAIaY
SMalA ay] “Joassy) AouaBe Aue 1o JuswuIBAON) sayE)

‘121NORnuewWw

30U JoU SIOP AsIMIDYI0 Jo

-uodar Yuswasiopua syt Aldwi 10 ymnsuod Ajuesss

)
A S1)

AN INTELLIGENT DYNAMIC SIMULATION ENVIRONMENT:
AN OBJECT-ORIENTED APPROACH *

: 3 *%k
J. T. Robinson and R. A. Kisner CONF-880899--3

DE88 016362

g3 £58¢ Engineering Physics and Mathematics Division
§8535 2 £l ng I'hy. 1

g8583 Oak Ridge National Laboratory
ge.é 8 P.O. Box 2008

g o8 ; Oak Ridge, TN 37831-6364
5287 %

2258 %

e 8% ; é **Instrumentation and Controls Divsion
sE53c QOak Ridge National Laboratory

§ zEs é P.O. Box 2008

tf22 4 Oak Ridge, TN 37831-6008
"8 E

%8s =

riEgis §

2 5 h—

8300 <

2~ I52]

- =33 z

“The submitted manuscript has been
authored by s conteractor of the U.S.
Go d contract DE-
ACO05-840R21400. Accordingly, the U.S.
Gov t retai - tusive,
royalty-free license to publish or reproduce
the published form of this contribusion, or
sllow others to do so, for U.S. Government

purposes.”

S2eIS paun Y Jo AdusBe ue Aq poosuods yiom Jo wnodoe ue se pasedaid sem 1odos siyg

{0 “yonpoid ‘smyesedde ‘uonewaoyur Lue jo ssau

-Isuodsas 10 Anpiqer; je8a] Aue sownsse 10
11341 Jo Aue 1ou ‘joasayy Kouade Aue sou yusw

JIewWwapen ‘aweu apes) Aq a01a195 10
~1239y 'siydu paumo Ajeansd sBunju

[t

submitted to: Third International Symposium on Intelligent Control,

Paper
Arlington, VA, August 24-26, 1988

* Research sponsored by the Advanced Controls Program of the Office of Reactor
Technologies Development, of the U.S. Department of Energy, under contract

No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. ER

BISTRIGHTION OF THIT RARHAMFNT IS NI 1MITED m

AN INTELLIGENT DYNAMIC SIMULATION ENVIRONMENT:
AN OBJECT-ORIENTED APPRCACH *

J. T. Robinson and R. A. Kisner®**

Engincering Physics and Mathematics Division
Oak Ridge National Laboratory
%’.O. Box 2008
Osk Ridge, TN 37831-6364

**Instrumentation and Controls Divsion
Oak Ridge National Laboratory
%’.O. Box 2008
Qak Ridge, TN 37831-6008

ABSTRACT

This paper presents a prototype simulation
environment for nuclear power plants which
illustrates the application of object-oriented
programming to process simulation. Systems are
modeled using this technique as a collection of
objects which communicate via message passing.
The environment allows users to build simulation
models by selecting iconic representations of plant
companents from a menu and connecting them with
the aid of a mouse. Models can be modified
graphically at any time, even as the simulation is
running, and the results observed immediately via
real-time graphics. This prototype illustrates the
use of object-oriented programming to create a
highly interactive and automated simulation
environment.
INTRODUCTION

The advent of very powerful workstation class
computers is making possible the application of
new tools borrowed from the field of artificial
intelligence to more traditional engineering tasks
such as simulation. One such tool that has received
a lot of attention lately is object-oriented
programming [1,2]. Object-oriented programming
is based on a hierarchical classification of
procedures and data that allows the modeling of
systems in terms of collections of objects.
Objects may be grouped into classes which contain
generic descriptions of state and behavior, which in
turn can be created from existing classes by
inheritance. Overruling mechanisms permit control
of the mixing of parameters and procedures for the
new composite class. The parameters describing
the state of an object are referred to as its
“instance variables.” Objects communicate with
each other by passing messages. The response of a
class of objects to a message is governed by a
procedure referred to as a "method."

Previous work has demonstrated the
applicability of object-oriented programming to
discrete-event simulations and rule-based
simulations [3,4,5,6]. In this paper, we focus on
its applicability to continuous process simulation
by describing a simulation environment developed
for power plants. A description of the snvironment
will be followed by a discussion of some
advantages of an object-oriented approach to
process simulation.

RIPTI F SIMULATION
ENVIRONMENT

The simulation environment has been developed
on a LMI Lisp machine using the FLAVCRS
object-oriented language [7]. It consists of a
library of class definitions and a user interface.

The class library contains the generic descriptions
of objects which define the domain of the
simulation environment. The user interface
provides the means to build, run, and interact with
simulation models using interactive graphics.

i i r

At the core of the simulation package is a
library of class definitions and associated methods
which define the response of members of the class
to particular messages. The classes can be grouped

into four categories:

(1} component-ievel objects,

(2) system-level objects,

(3) hybrid objects, and

(4) user interface and simulation control objects.

Component-level objects. Component-level

objects are the basic building blocks from which
simulation models are constructed. They may

represent either actyal components in the plant,
such as pumps, pipes, and valves; or be abstractions
such as heal sources and transport delays. Objects
from this category have methods for computing
their gross averaged physical properties, hydraulic,
and/or heat transter characteristics. The methods
are localized, that is, they do not describe how the
objects interact with neighbors. This information
is contained in the methods of system level objects.

Component-level objects are connected to
form systems via their ports. Ports are classified
by type and dimension, (e.g. fluid flow in mass) and
may have a nominal direction {e.g. input or output).
Ports are further divided into those accepting
single or multiple connections.

As an example component-level class consider
FLOW-CONTROL-VALVE. This class has the
following instance variables:

inlet-connection
outlet-connection
hydraulic-system
cvmax
valve-position
flow-rate
pressure-drop

The variables inlet-corinection and outlet-
connection specify the classes' ports and are used
to record the names of connected objects. A non-nil
value for hydraulic-system indicates that a flow-
control-valve is a component of a system level
object. Cvmax is a parameter related to the size of
a valve. The last three instance variables are
dynamic in nature and specify the instantaneous
state of the valve. The methods for
FLOW-CONTROL-VALVE include accessor functions
for all instance variables as well as
:compute-flow-rate and :compute-pressurs-drop.

System-level objects. For simulating a

collection of ‘tightly coupled objects it is not
enough to describe their isofated behavior or even
their behavior in relation to their immediate
neighbors. To achieve simulations which are
faithful and numerically stable the notion of a
system is required. We have therefore introduced
classes of system-level objects which are used for
defining operations on groups of related objects.
We have been careful in our treatment of systems
not to destroy the modularity of the
object-oriented approach. In particular, system
parameters are not frozen at some initial state but
are defined by reference to component-level
objects. Thus future changes in a component-level
object are immediately reflacted in its associated

system level object(s).

For illustration we describe the class
THERMAL-SYSTEM which solves tha energy
conservation equations (heat conduction and
convection) for groups of thermally connected
objects. These equations are represented in the

form

% =Rty T+)

where T represents the vector of temperatures, K(t)
is a time-varying coefficient matrix, and 'f'(t) is a
time varying forcing function. The instance
variables of class THERMAL-SYSTEM include:

components
A-matrix
f-vector, and
T-vactor.

At instantiation an object of class
THERMAL-SYSTEM automatically creates and
initializes the matrix A and vectors T and T of the
appropriate dimensions and assigns a row index
number to each component. At each time step the
THERMAL-SYSTEM object sends messages to all
components instructing them to update their slot{s)
in the coefficient matrix A or forcing vector I, and
then advances the resulting equation system one
time step.

it should be noted that the user does not have
to deal directly with system-level objects. They
arg automatically constructed prior to a simulation
run based on the connections between componens-
level objects. This category of objects exists
solely as a means of implementing efficient and
numerically stable algorithms.

Hybricd objects, The descriptions above

implies a two-level hierarchy of objects used to
model systems, component-level and system-level
objects. This is a bit over-simplified as many
classes actually function as both component-fevel
and system-level objects. An example is the
HYDRAULIC-NETWORK class which represents
parallel flow networks such as that illustrated in
figure 1. The function of this class is to return a
pressure drop or flow rate for the network given
the complementary parameter. This object
functions as both a system level object,
coordinating the solution of the hydraulic equations
amaong ils components, and as a component-level
object, functioning as a flow resistance in a larger
hydraulic loop.

Valve-A
Pump-A

’

'

'

'

¢

'

'

’
ot ,\ l
) 1 -~

[

‘

[

[

:

¢

Check-Valve

| E j Valve-8

Example hydraulic network object.

v

Figure .

Interface and Simulation Control. The final

category of class definitions consists of user
interface and simulation control objects. Examples
include the MODEL-MANAGER class, object editors
for input, strip-charts for output, and a system
clock. There is always exactly one MODEL-MANAGER
object per model which keeps a table of all objects
and their connections, manages the windows, and
provides a file system interface. Object editors are
interactive forms which provide a convenient means
for accessing and changing the instance variables of
individual objests. An example object editor for a
pipe is illustrated in figure 2. Strip charts provide
continuously updated plots of chosen parameters
during a simulation run. The system clock contains
the current simulation time and the time step of
integration. This object provides a means for
adjusting the time step size during a simulation
run.

PIPE
name: [Pipe-a]
length: 50.0

diameter: 0.5

thickness: 0.02
material: S$S-301

[:I exit

Figure 2. Pipe object editor.

User Interface

A requirement of the present simufation
environment is that it have a highly interactive
easy to use interface which will allow non-
simulation experts to successfully construct a
model. To achieve this the environment provides a
full library of objects allowing the user to
construct a model by simply drawing a process
schematic and supplying plant-specific parameters.
Interactive graphics are used for both model
construction and conducting simulation runs. A
model is constructed by placing and connecting
icons on the screen with the aid of a mouse. A set
of rules embedded in the model-manager class
protects against illegal connections, such as two
inputs or a fluid-flow input to a voltage output, by
refusing to accept the second connection from the
mouse. Parameters for individual objects are
entered and/or changed through forms accessed by
pointing at the objects icon with the mouse.

The use of a mouse to make connections
between components eliminates or reduces a
number of common sources of error related to
syntax, spelling, and inconsistent or incomplete
input-output specifications. These types of errors
are frequent with textual based input and are often
not caught until the compile stage, resulting in a
time-consuming edit-compile cycle.

The use of graphical input and icons to
construct simulation models is not unique.
However, most graphical input packages developed
until now produce code which must be pre-
processed before it can be run. By contrast, the
graphic interface described here is a means of
directly manipulating objects which collectively
make up the simulation "code." Hence the interface
is not restricted to building models alone, but is
the primary means of interacting with the
simulation as it is running. Figure 3 is a
representation of a typical screen as it appears
during a simulation run. The screen is divided into
three windows, the top containing a menu of
options, the bottom left the plant schematic, and
the bottom right strip charts for plotting output
variables. An object's state or behavior can be
changed in real-time during a simulation run by
either pointing at its icon in the schematic window
and changing a parameter (for example the set-
point parameter of the controller object) or by
sending it a message from the keyboard. The
effects of the change or message are reflected
immediately in the simulation output being plotted
on the output window. This immediate feedback and
elimination of the compile-link-run cycle is a
substantial time-saver, particularly when engaged
in exploratory modeling.

run edit script

m'-'

%’&’ o P s at ot o T ’r’f“’ (ol mﬁw*v
” “Xf }ff}qroﬁ""‘f‘t 3 .';., ~ ok ";7” f(é/ /

edit object save model

reservoir

e e whonds NN WYL

-

reservolir

Tt IR kA *

. s g o d P S
i e o R it st o S8 SR i

Figure 3.

F A -ORIENT
PPR

VAN

We believe that the object-oriented approach
to programming offers a number of advantages for
process simulation, the most significant being
associated with the concepts of class, inheritance,
and polymorphism as discussed below.

Classes are useful for building reusabie
generic descriptions of similar types of objects.
This concept is particularly powerful when applied
to modeling processes such as power and chemical
plants since these systems are typically composed
of a large collection of basic components which fall
into a relatively small number of categories (tanks,
pipes, pumps, valves, etc.). These categories can be
conveniently described by class definitions with
pariicular components bseing created by
instantiation, overriding the default values ol the
class as necessary.

inheritance can be exploited in two ways. The
first is by creating a class hierarchy in which more

Simulation "run-mode"

Output window

interface.

generic attributes of similar objects are defined in
top level classes which are then inherited by lower
levels. For example, in our system there are a
number of types of valves which all share the
attribute "valve-position®” and a restriction that it
remain between 0 and 100% open. This attribute
and the associated limit check are encoded in the
class GENERIC-VALVE which has been used as the
parent class for all valves (see figure 4). The use
of a class hierarchy not only allows cous to be
reused, but results in improved maintainability
since a single block of code shared by a large
number of classes can replace individual routines
for each class. Another view of inheritance useful
if the language supports multiple parents is the
“mixin" model. In this view, several classes can be
mixed together to create a new composite class.
We have used the multiple inheritance model to
create a number of classes, including for example
HYDRAULIC-SYSTEM. This class was created by
mixing two previously defined classes, TANK and
HYDRAULIC-LOOP. The new class computes average
pressure via the methods incorporated into TANK
and loop flow rate using the momentum
conservation model of class HYDRAULIC-LOOP.

GENERIC VALVE

CHECK
VALVE

ISOLATION
VALVE

FLOW CONTROL
VALVE

Figure 4. Valve class hierarchy.

Another feature of object-oriented
programming that has proved useful for building a
simulation package is polymorphism, the property
that allows each class to define a unique response
to the same message. The usefulness of this
property can be illustrated with an example from
the HYDRAULIC-LOOP class. An equation for flow
rate around a closed loop can be derived by
integrating the fluid momentum equation yielding:

da _
ot -ay; V4P
where

Q is the loop averaged volumetric flow rate,

a is a parameter containing geometric
coefficients, and

AP, is the pressure drop across component i.

When this equation is implemented as a method, the
derivative is obtained by sending a message to all
components requesting their pressure drops APi for
the given flow rate Q. These comporients might
include for example pipes, pumps, and valves, each
with a different algorithm for computing pressure
drop. In a traditional program we would need to
determine apriori the type of each component in
order to determine the correct subroutine for
computing pressure drop. This would necessitate a
test clause somewhere in the code which would
need to be modified each time a new type of
component is added to the simulation package, and
might furthermore result in a proliferation of
subroutine names such as compute-pressure-drop-
valve, compute-pressure-drop-pipe, etc. With an
object-oriented approach we send the same
message to all objects in the loop
“compute-pressure-drop”, leaving it to the object
itself to use the correct procedure.

E RE WORK

At the present time we are studying means of
integrating the simulation environment with tools
for linear analysis, frequency domain analysis, and
symbolic equation manipulation to provide a
capability for designing linear (state-space) and
nonlinear control systems for nuclear reactors. As
a first step towards integration with control design
tools, we intend to improve our treatment of
systems by introducing a consistent and formal

representation scheme along the lines suggested by
Astrom and Kreutzer [8] to system-leve! classes.
This should allow us to develop general algorithms
to generate state-space representations, necessary
for most modern control algorithms, from the
object-oriented models. We also plan
improvements to the user interface to allow
zooming in and out of systems similar to the Hibliz
system [9].

CONCLUSIONS

A simulation environment for power plants
has heen developed using object-oriented
programming within a LISP environment.
Advantages of an object-oriented approach to
simulation include a high degree of modularity, the
data abstraction afforded by classes, code
reusability due to inheritance, and the ability to
axploit the polymorphic nature of message passing
to build very generic procedures. Finally, the
interpretive nature of LISP eliminates the tedious
compile-link-run cycle and allows dynamic,
reconfigurable models to be built in a highly
interactive manner.

REFERENCES
1. Cox, BJ. 1986. Qbject-oriented programming:
an_evolutionary approach, Addison-Wesley,

Reading, MA.

2. B. Thompson. 1987. *“Programming With
Objects.” Al Expert. September. 15-20.

3. Zeigler, B.P. 1987. “Hierarchical, moduiar
discrete-event modelling in an object-oriented
environment.” Simulation (49)5. 219-230.

4. Stairmong, M.C. and Kreutzer, W.. 1988. "FQOSE:
a Process-Oriented Simulation Environment
embedded in SCHEME." Simulation (50)4. 143-
153.

. Ghaznavi-Collins, 1. and Thelen, D. 1988. "An
object oriented approach toward system

architecture simulation.® Al PAPERS, 1988 (R.J.

Uttamsingh ed.) Simulation Series (20) 4. SCS,
San Diego, CA. 103-107.

Khiar, P. 1986. “Expressibility in ROSS, an

Object Onented Snmulatuon System.” Artificial
i (G.C. Vansteenkiste;

E.J.H. Kerchoffs; B.P. Zeigler eds.). SCS, San
Diego, CA. 147-156.

Staliman, R., Weinreb, D. and Moon, D. 1984.

Lisp Machine Manual. Lisp Machine Incorporated,

Los Angeles, CA.
. Astrdm, K.J. and Kreutzer, W. 1986. "System

Representations.” Proceedings of the Third

Design, Arlington, VA, September 24-26, 13-18.

Elmqvist, H. and Mattsson, S.E. 1986. "A
Simulator for Dynamical Systems Using
Graphics and Equations for Modeling."

P i { the Third S ,

Arlington, VA, September 24-26, 134-139.

