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Abstiact

This paper describes the application of modeling
and analysis techniques to scftware that is de-
signed to execute on four channel version of the
the Charles Stark Draper Laboratory (CSDL) Fault-
Tolerant Processor, referred to as the Draper FTP.
The software performs sensor validation of four
independent measures (signals) from the primary
pumps of the Experimental Breeder Reactor-11 oper-
ated by Argonne National Laboratory-West, and from
the validated signals formulates a flou trip signal
for the reactor safety system.

The work reported here is part of a hardware/soft-
ware modeling and analysis project. In an earlier
paper (2), we have described the application, hier-
archicai modeling technique based upon Petri Nets
(7), and the formal analysis techniques based upon
the automated reasoning software ITP/LHA (5). In
the earlier paper, we demonstrated the fault-
tolerance of the FTP's data exchange instructions
to failures in the hardware. 1In this paper, we
demonstrate that the same modeling and analysis
techniques apply to proving the fault-tolerance of
the software to failures in the hardware, including
the sensors, provided the validation algorithms
have a certain generic structure. 1In addition,
this approach has provided insight into formal
software specification as well as into the genera-
tion of test vectors for software. The combination
of a formalized specification and a potential
formal derivation of test vectors provides contin-
uity between specification, design analysis and
testing.

Emphasis is placed upon the hierarchical modeling
capabilities of Petri nets. In particular, we have
developed an abstraction of the data-flow in terms

of the specification of a generic application pro-
gram for the Draper FTP. \Using this program and
the data-flow abstraction, we prove the fault-
tolerance of the application program to hardware
and sensor failures. Finally, based upon a more
etailed specification of the sensor validation and
flow trip software, we demonstrate that this pro-
gram satisfies the sufficient conditions developed
for the generic program to claim fault-tolerance.

Introduction

This paper is a report of the software verification
aspect of a project whose gnal is to explore the
feasibility of automating the verification process
for computer-based safety systems. The intent of
the project is to demonstrate that both the soft-
ware and hardware that comprise the system mect
specified availahility and reljability criteria,
that is, total design analysis. The approach to
automation is based upon the use of Automated
Reasoning Software developed at Argonne National
Laboratory (5). This approach is herein referred
to as formal analysis and is based on previous work
on the formal verification of digital hardware
designs (4). Formal analysis represents a rigorous
evaluation which is appropriate for system accept-
ance in critical applications, such as a Reactor
Safety System (RSS). The demonstration of the fea-
sibility of applying formal analysis is thec appli-
cation of these techniques to a case study.

The case study is based on the Reactor Safety
System (RSS) for the Experimental Breeder
Reactor-11 (EBR-I1[). This is a system where high
reliability and availability are tantamount to
safety. The conceptual design for this case study
incorporates a Fault-Tdlerant Processor (FTP) for
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the computer environment. An FIP is a computer
which has the ability to produce correct results
even in the presence of any single fault. This
Technology was selected as it provides a computer-
based equivalent to the traditionat analog based
RSSs. This provides a more conservative design
constraint than that imposcd by the 1EEE Standaru,
Criteria For Protection Systems For Nuclear Pawer
Generating Stations (ANSL N42.7-1972).

The Project

Since 1983, the EBR-II Division of Argonne Naticonal
Laboratory has established the goal of developing
and demonstrating a computer-based control system
with sufficient availability and reliability for
use in reactor safety systems. This goal has been
incorporated into a project entitled the Full
Authority, Fault-Tolerant, Reactor Control System,
FAFTRCS. Significant effort toward attaining the
ultimate goal has focussed on investigating avail-
able technoiogies and in synthesizing various dis-
ciplines. For example, after studying the avail-
ability of fault-tolerant computer systems (8), a
decision was made to contract with the Charies
Stark Draper Laboratory, CSDL, for the design and
fabrication of such a system. The CSD. Fault-
Tolerant Processor, FTP, forms the besis for the
reactor safety system.

Although guided by this case study, the computer-
based solution proposed by the FAFTRCS project
poses numerous areas for research. 1Indeed, if
digital systems are to be incorporated into com-
mercial reactors, one must identify the relevant
issues concerning verification and validation of
computer-based reactor shutdown systems so that
they adequately meet the requirements for licens-
ing. This paper addresses the issuc that the soft-
ware for each application must be demonstrated to
work reiiability in the presence of hardware fault.

Onc must be cautioned against viewing the resc _s
presented in this report a5 being complete in
scope. The goal of the project is to demonstrate
the feasibility of the approach and to identify
those areas that need further research and devel-
opment to fully validate the total system. This
report thus represents the next step, after (2), in
developing a verification methodology and demon-
strating its viability on an essential and non-
trivial application.

The Case Study

The essence of this case study is to devise a meth-
odology which leads to the qualification of the
total system. Thus, the study involves complete
analysis of design for meeting the requirements of
ultra-high reliability and availability. This sec-
tion describes the guidelines which govern qualifi-
cation, the target system, and the design concepts
for a subsystem of the target system,

Experimental Breeder Reactor No. Il (EBR-II) is a
00E-owned and ANL-operated research reactor. In
accordance with DOE guidelines, a Reactor Shutdown
System (RSS) is provided to ensure safe reactor

shutdown or to mitigate the consequences of postu-
lated accidents. The RSS is designed in actordance
with DOE standard RODT C-16-11. The intent of this
standard is to provide guidance during the design
and anatysis of the RSS Lo ensuie adequate system
reliability.

The present EBR-11T RSS is briefly described in
(2). In summary a subsystem provides protection
against plant excursions where the power-to-flow
ratio may exceed a predetermined limit. This sub-
system will generate a reactor trip signal should
this limit be exceeded. The underlying strategy
for protection of EBR-I1I is that the powmr-to-flow
ratio be maintained at or below a predetermined
Tevel.

The impetus for this project lie- in the continuing
loss of the flow metering capability al €BR-11.
Since initiating operation, seven out of the ori-
ginal non-replaceable ten flowmeters have failed.
To continue adequate protection against loss of
flow transients, the FAFIRCS Project is developing
a flow proteoction circuit which will derive a
measure of flow from replaceabl~ sensors.

The system being developes” hy the FAFIRCS Pruject
will replace the two flow yratection subchannels of
the present RSS with a computer-based system that
is functionally equivalent and satisfies the desiyn
constraints of reliability and availability. Fig-
ure 1.1 depicts the current conceptualization of
this subsystem, which is further described in (2).
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Replicated sensors are installed on both EBR-II
primary coolant pumps to provide greater reli-
ability and availability. After reading in the
data from the redundant sensors, software is exe-
cuted to validate the sensor data and then to infer
whether flow is within the accepted guidelines (see
Section 4). [If not, a reactor trip is generated.
The activation of a flow trip by the fault-toleranc
processor is based upon a 2-out-of-4 relay logic
vote.

As mentijoned in the introduction, this report dis-
cusses the results of investigations into the fea-
sibility of applying formal analysis techniques to
the problem of qualifying computers for use in
RSSs. The case study is planned to culminate with
the approval for installation of the FIP-based flow
protection subsystem into the RSS at EBR-II. This
approval is granted by a group of reactor safely
experts who are convened to review the documenta-
tion prepared to demonstrate compliance with the
standards that were previously mentioned.

The Draper Fault-Tolerant Processor (FIP} -
Overview

The Oraper Fault-Tolerant Processor consists of
four identical nodes (each with a Motorola 68000
processor, memory, input/output parcs, commun-
icator, interstage register, clock, and busses)
connected together through their communicators and
interstage registers in an identical manner (11).
The nodes are composed of off-the-shelf components
and are identical, except for identification
switches which identify each processor in a unique
way. The software in each node is identical,
including bath the application software and oper-
ating system, and executes in syachrony in each
node. Provided every component in all nodes is
fault-free and the clocks in each node remain syn-
chronized, the nodes can be considered to be iden-
tical at all times, except for the setting of the
identifier switches. Thus, from the point of view
of the operation and programming of the applica-
tion, the machine appears to be, and is, programmed
as if it were a simplex system.

Although the FTP system is designed to remain in
synchrony, it is subject to failures which poten-
tially invalidate this design claim. To tolerate
such failures, the operating system perindically
checks that the data in the memory of each node is
the same and that the behavior of the communication
mechanisms between the nodes are operating cor-
rectly. Checks are made by distributing the values
of data register, status flags, error indicators,
and certain memory values on a regular basis
through the communicators and interstage registers.
These checks are performed in the processor idle
times befween execution of the application. As the
communicators vote on the data, bit by bit, a fault
in a node can be detected. {The voting is per-
formed on a best two-out-of-three basis, with one
of the four nodes masked from the voting process.)
By this mechanism, a faulted node is detected. The
operating system in conjunction with the hardware
will reconfigure the FTP system so that the faulted
node is masked out and replaced by the fourth spare
node.

0i the average, this continuing process of checking
that the nodes are pe furmina the same cperation on
the same data occupivs at most 10% of the available
CPU power. Also, during this time, the fourth
{spare) processor is participaling in all of the
operations in synchrony with the three active
nodes. Thus, at any given time, it is known
whether or not it is operational and has the same
data as the other nodes. FProvided the spare is
fault-Tree, it is ready to assumo the role of any
faulted node that may be discovered among Lhe
active nodes. {In the current design, the auto-
matic reconfiguration of the FIP mus!l be accom-
panied by a manual intervention that connecls the
sensors of the faulted node to the spare node.)

Synchrony of the node clocks is maintained at the
hardware level by a special fault-tolerant clock.
Specialized hardware steals cycles, depending on
whether a clock signal derived from each node's
clock lags, is the same as, or is ahead of the the
fault-tolerant clock. 1his clock check is per-
formed by the hardware using a distribution network
similar ta that for the data network mentioned
above, but reserved for clock data only.

The Softeware For The Oraper FIP

The software consists of the operating system and
the application software.

The operating system initializes the nodes and
configures the processors so that at least three
are in synchrony. Once this is accomplished, a
dispatcher is started that cyclically executes the
application software and other software that
ensures the system is tolerant to hardware fail-
ures. The software that ensures this tolerance is
fast fault-detection, isolation, and reconfigur-
ation software (FDIR), timer check software, and
certain hardware checks performed as background
tasks.

The application software reads each available plant
sensor {twelve for FAFTRCS flow trip computation,
four independent measures of threc redundant sen-
sors) once and determines the state of the flow for
the reactor primary system. If an anomaly in the
flow is detected, the application software in each
node generates a trip signal which is interpreted
by the reactor shutdown system.

The computation time required to determine the
state of the plant is small compared to the
required time interval between successive readings
from the plant sensors. In the slack time, the
dispatcher initiates certain tasks that check fu
and maintain the proper operation of the FTP.
These tasks include a timer assessment procedure
and a portion of a serjes of background tasks that
check for latent faults in the’hardware as well as
analyze the results (syndrome bits) of the voting
process.

The flow of cantro' in the specific application
software is as follows. The first time the appli-
cation software is executed, initialization of
local variables is performed, Once completed, the
software initiates, reads, and stores the sensor



data from its own node. Next, the software distri-
butes the data from each node to the others in such
a manner that: (1) the data in each processor is
the same, if there are no hardware faults, or (2)
the data in a majority of the processors is the
same (but not necessarily correct), if there are
hardware faults, GSigna! validation tests {sequen-
tial probability ratio tests) on the twelve sensor
signals are performed, six (threc current and three
rpm) for each pump. The results for each of these
tests from each node are distributed to the other
nodes, compared, and distributed back to each node.
Again, the data returned to each processor is
assured by the hardware to be the same in a major-
ity of the processors but not necessarily correct.
However, it should be noted that the program is so
structured that a claim can be made that the
results are correct even in the presense of one
fault. Each node then indicates a flow trip
signal, if appropriate, to the reactor shutdown
system.

The Draper FIP Hardware

In Figure 1.2, a simplified diagram aof the Yata
flow side of the Draper FIP is shown (9-11). Fun-
damentally, the figure shows the interconnection of
four nodes, which will be referred to a< Node-A,
Node-B, Node-C, and Node-D, each node comprised of

Figure 1.2. Simplified Representation of
the Data Flow in the Quadded Graper FTP

a cluster of units, including a processor unit
which is a Motorola 6B000. As an example, Node-A
consists of the following units: an interstage
register, Inter-a; a communicator, Com.-a; Versa-
Bus; the processor, Proc-a; Memory Mem-a; 1/0-Port;
YME-Bus; two rpm sensors. The function of each
component is discussed in (2).

Simplified Representation of the Data Flow in the
Quadded Draper FIP Figure 1.2 is a simplification
of Figure 1.2 in that the comnunicator in each node
is merged with its processor, and only the data
flow among the four nodes is represented.  (The
boxes represent the partition of the FIP into right
fault-containment regions.) Not described in this
figure are the hardware voting circuits that are
contained within each communicator. The quadded
voting structure contributes to the fault-tolerance
of the total system.

The focus of the design of the FIP is its ability
to provide congruent data to a majority of the
processors. lhe meaning of congruent data is the
following: The majority of the processors are
guaranteed to be operating on the same data value
if that data value has been distributed through the
data network connecting the four nodes of the
system. Notice that congruent doos not mean
correct. In Figure 1.2, if Proc-A distributes a
data value to the other throe nodes, the hardware
voting clements thal are buill into the communi-
cator units guarantee that the same voted data
value will be stored by each processor. Lt may be
that due to errors, the transmitted data value is
corrupted so that the process of voting results in
a wrong data value being accepted by each of Lhe
processors; but in this case, the data valucs
accepted by the majority of the processors are
congruent. They are the same values, although they
may be incorrect. 1f a majority of the voted data
is identical to the data that was initially sent hy
Proc-A, the voted data is said to be consistent.

The claim of fault-tolerance for the FTP is linked
to the manner in which the FIP operates. Each of
the four processors is assumed to be executing the
same instructions in lock step synchrony with one
another. When a data vaiue is computed by cach of
the processors, each distributes its value to the
others via the data distribution network. 1In this
situation, the voting mechanism not only guarantees
congruent data being stored by each processor, it
results in identical data being stored even in the
presence of a single failure in the system.

The fact that single failures are tolerated by the
system is dependent on the physical design of the
FTP. Fault-tolerance in the system means that, if
the hardware in a single fault-containment region
malfunctions, at most a single error is generated
out of the region. Understand that this single
error could be the result of several failures
within the faulted region. However, the failures
still only result in the propagation of a single
error to the other regions. This error is voted
out, or masked, by the correctly functioning units
in the system. The error is detected during the
voting process, and the malfunctioning region is
masked out of further voting until repair is ac-
complished. ' .

The Interface Between The Drdper FTP Hardware and
Software

The interface between the hardware and software has
been partitioned into two levels:



A level needed to verify claims of fault-tolerance
of the total system (see Figure 2.1);

A level to verify claims about the functionality
which supports the first level.
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Figure 2.). A Generic Application Program

The interface at the total system fault-tolerance
level (level 1) includes the primary FTP commands
that exchange data among the nodes, commands that
synchronize the clocks in each node with one
another, test and evaluate the status flags for the
hardware, and so on. At this phase of the project,
we have concentrated on the commands that exchange
data and, in particular, how the data transmitted
depends on the fault-containment regions. This
aspect of the fault-tolerant interface was selected
because it is used throughout the operating system
(for the fast FDIR and for several of the back-
ground tasks), and is related to the interface
assumed by the clock synchronizing software, Fur-
ther, data transmission is an integral part of the
fault-tolerance of the application software for
reactor flow control.

The wnterface at the funciional level {ievel ?)
includes the data transfer commands belween the
nodes, the sensor initiate, read, and store com-
mands, and the basic operations of the processor
such as the arithmetic aperations. Most of the
basic onerations (except the floating point opera-
tions) are common to all 68000-based processors and
will be assumed to be working correctly. Other
operations such as those associabted with sensor
data and the arithmetic cperations are unique to
this application and will be the object of later
phases of the FAFIRCS project,

The formal analysis of the software at the second
level is based on the inductive-assertions method
of Floyd (6). Hsing the Argonne tools TAMPR (1)
and [IP (5), we plan to mechanically transform
software, written in the € programming language,
using TAMPR to yield those conditinns necessary for
the software to meet its purported claims., The
representation for these conditions, called verifi-
cation conditions, is the same as that for the
hardware, namely Petri nets. An analogous verifi-
cation condition generator for Fortran implemented
using TAMPR has been in operation for the past
seven years, The implementation for the C pro-
gramning language is currently underway.

At this point, the analysis of the interface in
terms of these two levels is incomplete. This
report discusses progress for the first level as
well as the development of an abstraction method-
ology for specifying the functionality of the
second level,

Fundamentals of Formal Ananlysis Based on Automated
Reasoning

The automated reasoning system applies a set of
axioms to a representation of the system being
modeled, and by using a collection of built-in
inference mechanisms, attempts to deduce properties
of the system. This process implies several con-
siderations. There must he a language in which to
represent the axioms and other manipulation rules.
The representation used to model a system, in our
case Petri nets, must be translated into the lan-
guage of the reasoning system. And finally, there
must be a strategy employed by which proofs of
properties are produced.

Several candidate representations have been ana-
lyzed. At this time, the decision has been made to
use Petri nets as a possible representation (7).

It appears that these nets meet the goals of a
viable representation. Petri nets are uninter-
preted graphs. Our task has been to define effi-
cient operational semantics for them, that is,
annotate the graph to give it some functional cap-
ability of interest. We have learned that there are
many ways to define such semantics, each of which
can have drastically different effects regarding
proof efficiency, understandability, etc. Clearly,
this is an area of continuing research.

Petri nets are composed of circles, called Places,
bars, called Transitions, and directed arcs which
connect Places to Transitions and Transitions to



Places. In classic Petri net theory, Places may
contain an object referred to as a Token. 1f all
Places which are inpuls to a Transition contain a
Token, then the transition is activated and may
fire, which results 1n all input Places having
their Token removed and in all output Places
receiving a Token. This simple classic behavior
has been extended and madified by various
rescarchers. However, the iwportant point to note
is that in terms of computational power, classical
Petri nets can be made equivalent to Turing
Machines (3).

Basically, we have developed a discipline for the
annotation of Petri nets and extended the classic
model in order to define the functional capability
that is required for our representation of software
and hardware (4). For hardware, Places can be used
to denote any medium that stores or transports
data, for example, a flip-flop, register, bus, etc.
Transitions are allowed to represent arbitrary
functional modules, such as an adder, an arithmetic
logic unit (ALUY, 3 voter circuit, a single logic
gate, etc. For software, Places typically repre-
sent the status of the actual program counters, and
a loken, if present, is the state of the processor
at this point. Transitions represent one or more
program statements.

For both hardware and software, these restrictions
of the use of Places and Transitions are augmented
by four extensions to the theory. First, Tokens
are allowed to be symbolic expressions which can
contain information representing properties of the
system, Second, a Place may be specially desig-
nated as a source of a token which is read but
never removed when a Transition to which the Place
is connected fires. Third, Places may be the
source of control signals for a Transition.

Fourth, Places and Transitions can have a type
property associated with them, (The type property
for Places and Transitions is discussed further in
the context of the proofs of fault-tolerance in
(2)). Instead of the simple firing procedure for a
Petri net previously described, now the firing will
be the symbolic function associated with a transi-
tion operating on the symbolic expressions which
are the tokens. In addition, the firing will depend
on the nature of the control signals which are part
of its inputs; and instead of all input Places
having their Tokens removed, certain input Places
retain their Tokens.

The language of ITP is an extended subset of first-
order logic called clausal form. This language is
used to represent axioms and the three constructs
of Petri nets, namely Places, Transitions, and
Connections. The representation is based on tem-
plates which are generic in nature, allowing us to
provide Transitions with a specific functionality
of interest.

The generation of a proof requires the incorpora-
tion of strategies. While this report cannot go
into the details of such, suffice it to say that
the literature is filled with detail concerning
these strategies (1). 1n particular, the research-
ers at Argonne have developed a considerable body
of ruTes that provide the user of the 1TP system

with guidance as to the efficient use of the syslem
and with several strategies for generating proofs.
However, it must be stated that like first-order
predicate logic, clausal form is not decidable.
This impiies that we cannot always determine
whether or not a given property or behavior results
from the abstract madel of the hardware, or soft-
ware, system. If the intended result is a loygical
consequence af the abstract description and the sot
of axioms and rules that are defined, then this
fact will always be established by a formal proof,
given cnough time. [If, on the other hand, the
result does not logically follow from the model, a
proof cannot always be obtained that formulates
this fact: The verification procedure might ter-
minate proving the nonrealization of the property,
it mignt terminate with no result proven, or it
might not terminate at all. The inability of not
knowing if the verification procedure will ter-
minate reduces to the halting problem of comput-
ability theory (3). In cases for which no result
is produced, the redsoning system may be ahle to
construct a counter example in order to show that
the original conjecture was false. Hence, the use
of the reasoning system requires the user to inter-
pret results and to interact with the system. The
fact that an inconclusive result can occur is 3
further reason for our emphasis on a representation
that {s understandable by the user and that can be
easily transformed.

A Generic Application Program

As described earlier, our approach to the modeliny
and analysis of total system is hierarchical. Con-
sequently, we have formulated a generic application
program which has three purposes: to provide a
template for writing application programs using
three redundant sensors attached to three channels
of a quadded FIP; to provide a known and provably
correct interface between the hardware and the
application program; and to provide a specification
for the computational part of the application pro-
gram that, if followed, assures that the resulting
control system is fault tolerant with respect to at
most one simultaneous failure of the computing
hardware and sensors,

The template for the generic application program is
given in Figure 2.1. It specifies that the appli-
cation program running in each processor cyclically
(and simultaneously in each processor) reads its
own sensor, that jt distributes the sensor value
(Sa for Proc-A, Sb for Proc-8, and Sc for Proc-C)
to the other processors, that each processor per-
forms a computation, denoted as P{5Sa,Sb,Sc), on the
three sensor values, and that each processor dis-
tributes its result to the other processors in a
voted exchange. (Processor d executes the same
program but when it reads its own sensor, the
sensor-read operation behaves 1ike a null operation
and no distribution of that sensor value is per-
formed by processor d, nor is received by the other
processors. )

The interface to the hardware occurs in three
places. First, each processor's sensor is read.
The assumption for this operation is that the pro-
cessors simultancously receive a value from three



independent sensors measuring the same physical
quantity; however, the values read need not be
jdentical and generally are nut the same. Second,
the value of each of the three sensors is distri-
buted to the other sensors in a manner that guar-
antees that the majority of the processors have the
same value for that sensor even in the presence of
a hardware fault. A formal proof of this assump-
tion using the same automated reasoning tools and
representation described here is presented in

(2). Third, the result P(Sa,Sb,Sc), computed hy
the identical application program in each pro-
cessor, is distributed on a volted exchange to each
of the other processors. ({The computed result for
the applications considered here is a signal which
indicates whether the sensor values are nominal or
not). If two of the three active (unmasked) pro-
cessors distribute the same value, then the value
returned to each processor is the same and is the
majority value, even in the presence of a hardware
failure. This result has also been formally proven
in (2).

The specification for the computational part of
this generic program is that the result P(Sa,Sb,Sc)
depends only on the proper operation of the proces-
sor in which the computation is performed, assuming
that Sa, Sb, and Sc are dependent upon Proc-A,
Proc-8, and Proc-C, respectively. This result is
proven again with the automated reasoning tools and
representation described earlier; the proof is out-
lined in the next section,

Given the above properties of the hardware/software
interface and of the application program, we can
readily prove that the majority of the resulting
trip signals generated at the Place "Action Signal®
of Figure 2.1 is correct, even in the presense of
one hardware fault., The proof is outlined as fol-
lows: Consider one processor, say Proc-A. (The
proof is the same for the other processors.) The
acquisition of the sensor values Sa, Sb, and Sc
depend upon the proper operation of the Proc-A,
Proc-B, and Proc-C, respectively. (It is assumed
that the sensors are part of their respective pro-
cessors.) The exchange of the sensor values makes
the modified sensor values Sa', Sb', and Sc' in
Proc-A depend on Proc-A, Proc-A and Proc-B, and
Proc-A and Proc-C, respectively. This dependency
situation now satisfies the conditions for the
operation of the application program described in
Section 3. There, we have shown that the result
P(Sa',Sb*,Sc') is dependent on Proc-A. Similarly,
the result in the application program in Proc-B and
Proc-C is dependent on Proc-B and Proc-C, respec-
tively. Hence, since at most one fault is assumed,
at least two of the three processors have the same
result. Thus, the conditions for the voted
exchange are satisfied, and hence the vated result
is the same and correct on each processor that is
fault-free. Hence, two of the three action signals
are the same and are correct.

The Specific Sensor Validation and Trip Generation
Program

A specific application program is illustrated in
Figure 2.2. To demonstrate that the entire system
is fault tolerant to single hardware and sensor

failures, we must show that the result of this
program depends only on the processor in which the
prugram is execuling.

( . ) Ready 1o Peefunm 1'(Sa, Sh, S
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| | |
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TN Resdy To Imuate, Dutnbute,
And Stare Result

Figurc 2.2. A Specitic Application Program P(Data)

Vate OnTnp Signale

Before outlining the proof, we need to describe the
operation of the program in more detail. 0n input,
the program is given three date values, one for
each of three independent sensors reading the same
physical quantity. The data values are compared in
pairs by a sequential prohability ratio test
(SPRT). The purpose of this test is to determine
if the two values belong to distributions having
the same mean and standard deviation. The SPRT is
modeled by the three transition labeled Sprt-ab,
Sprt-bc, and Sprt-ac in Figure 2.2. Next, the
results of the SPRT computation are compared in
pairs, yielding three results, indicating the value
for sensor a, b, and c¢ are valid; that is, the
results of comparing the values for sensors a and b
and for sensors b and ¢ are compared -- if either
indicate the sensors values are from the same dis-
tribution, then sensor a is assumed valid, and sim-
ilarly for the other pairs of SPRT results. This
computation is modeled by the transitions labeled
Is-ok-a, Is-ok-b, and Is-ok-c in Figure 2.2. Next,
using the validated sensor signals, a trip deter-
mination is made by comparing each signal with pre-
determined ranges of permissible values for the



sensors; this is modeled by the transitions labeled
Trip-a, Trip-b, and Trip-c in Figure 2.2. Finally,
a vote of three signals is taken on a best two-out-
of-three vote. This is modeled by the single tran-
sition labeled Vote in Figure 2.2. The result of
this vote is the resauit of the application program,
denated as P(%1,Sb,Sc).

To prove fault-tolerance, the analysis of Lhe
generic application program vequires that the
resylt depend upon the rorrect operation of the
hardware in the containment region for the pro-
cessor which is execuling.

The proof of this result has been obtained by the
automated reasoning software I[P using a repre-
sentation for Petri nets of Figure 2.2. The same
representation technigues and strategies used to
obtain proofs of fault-tolerance for the hardware
were used to obtain this proof as well. [In parti-
cular, the proofs use a general technique of main-
taining dependency lists for each operation and
datum which avoids the need for lengthy case
analysis of all possible single fault scenarios.

The proof of fault-tolerance was based upon expli-
cit assumptions about the signal values, and the
computations provided by the SPRT and the trip
determination. These assumptions form the basis
for a test specification which complements the
partition described above. These assumptions are
to be validated by either more detailed analysis
(such as formal verification techniques described
in Section 1.6) or by testing. 1In this sense, we
nvision complementary methods as providing greater
completeness than the separate parts as they are
connected by a formally defined interface. This
completeness has been suggested in reference
(Goodenough},

The essence of the proof can be best illustrated by
considering the execution of the program of Figure
2.2 on one processor, say c. (The proofs for the
progyam executing in the other processors are the
same.) The input signals Sa, Sb, and Sc are depen-
dent upon the carrect aperation of Proc-A, Proc-0,
and Proc-C, respectively. It is assumed that the
SPRT yields a result which has a dependency list
that is the union of the dependency lists for its
inputs. Thus, the dependency lists for the SPRT
results are Proc-A, Proc-B, and Proc-C, Proc-A and
Proc-C, and Proc-B, and Proc-C for the results
denoted Sprt-ab, Sprt-ac, and Sprt-bc. The next
aoperation is a comparison of the SPRT results which
in effect indicate which sensor signals are valid.
The dependency lists for the results Is-ok-a,
Is-ok-b, and Is-ok-c are respectively Proc-A and
Proc-C, Proc-B and Proc-C, and processor Proc-C.
The operation of the trip determination depends
only on the validated signal and the current pro-
tessor Proc-C, and so the dependency lists for the
individual trip signals are the same as for the
validation results. Finally, the vote, being a
best two-out-of-three vote yields a result which is
dependent only on the current processor, namely
Proc-C. This praoperty of the best two-out-of-three
vote is a consequence of the assumption that there
is at most one faull at any given time.

In a similar manner, the results of the programs
executing in processors a and b are dependent on
Proc-A and Proc-B respectively. This completes the
proof,

Conclusions

Using general purpose tools, we have demonstrated
that formal analysis of complicated systems can be
performed. This paper has discussed the proofs of
fault-tolerance of software to failures in hard-
ware, assuming the Draper Fault-lolerant Processor
is used. A previous paper (2) has demonstrated
that the same techniques for modeling and analysis
can be used for hardware, illustrating that a uni-
{ied approach for both hardware and software can he
used. We have also shown that the software is con-
sisteat with the design peradigm for fault-
talerance,

However, a word of caution is appropriate, AlL of
our proofs assume certain properties of the hard-
ware and software environment that have not yet to
be praven in the same formal manner. Some of these
assumpt ions will probably never be proven in this
manner as the tools are not adequate for such
proofs (for example, proofs that the Motorola 63000
performs as specified or that the compiler compiles
code correctly). However, the method of proof
described herein clearly identifies the assumptions
made to obtain the proofs. These assumptions must
be examined carefully and validated (accepted or
rejected) by whatever criterion is practical.

In summary, we have demonstrated an analysis tech-
nigue which: Facilitates formalization of a hier-
archical specification,

Generates a formal cantinuity between analysis and
test vectors,

Provides a formal communication between designers
from varied disciplines.
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