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Incommensurate Structures

J.D. Axe

Brookhsven National Laboratory, Upton, New York 11973"

Abstract. A review is given of neutron scattering studies of dis-
placive incommensurate structures, and of the instabilities of crystal-
line solids that lead to their formation.

1. Introduction

Incommensurate structures are peculiar quasi-crystalline substances that
lack periodic translation symmetry not in a haphazard amorphous way but
because two (or perhaps more) elements of translational symmetry are pres-
ent which are mutually incompatible. Suppose A(?) and B("r) represent
the spatial distribution of two characteristic properties of a material
and that

•+ -». -*•-*•

A(r) = I A e i G ' r ; B(r) = I B e i G'* r (1)
{G} G {G-} G

The structure is incommensurate if the sets of reciprocal lattice vectors
\t\ and {£'} have only the trivial elements G~ = '&' = 0 in common.
Various cases are possible depending on what A and B represent, as shown
in Table 1.

Neutron scattering has been instrumental in the study of incommensurate
structures of all of the above types, but this is particularly true for
the magnetic case, since neutrons are uniquely sensitive to magnetic spa-
tial distributions on an atomic scale. The essential role of competing
forces (in this case due to magnetic exchange interaction) of various
ranges was emphasized in the models of the phenomena. Major reviews by
Mackintosh (1982) and by Koehler (1982) in this volume make further com-
ment here unnecessary.

The history of incommensurate intergrowth/overgrowth structural studies
with neutrons is, by comparison, brief. The study of adsorbed surface
monolayers, which depended crucially on the advent of exfoliated graphite
substrates is reviewed by Nielsen (1982) in the volume. The best studied
example of an incommensurate intergrowth compound to date is Hg3_£AsF5.
This material has many remarkable properties, not the least of which is
that of a one dimensional liquid, and the results of neutron studies have
been recently reviewed (Axe, 1982). The present review will concentrate
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Table 1

Incommensurate
Structure Type A(r) B(r) Example

1. magnetic

4. displacive

magnetic
density, M

2. compositional average
<P1+P2>

3. intergrowth/ lattice p.
overgrowth

displacement
field, u(r)

nuclear
density, P

differential
density,
< p r p 2 >

lattice p.

average

Cr, r.e. metals

CuAuII, feldspars

adsorbed monolayers

quasi-ld & 2d metals

on the last of the four types, displacive modulation, which involves
periodic displacements,

u(r) = A cos(q*r-<)>) (2)

of the atoms away from an average regular lattice site. Not uncommonly
the modulation amplitude, A", disappears above a certain temperature, T o,
the material thereby transforming from an incommensurate structure into
a commensurate (normal) phase with the average structure.

2. Charge Density Waves

In metals an incommensurate transformation may result from a charge den-
sity wave (CDW) instability in the conduction electrons near the Fermi
surface. Neutrons couple not directly to the CDW but rather to the dis-
tortions that result as the atomic cores adjust by coulomb screening of
the CDW. CDW instabilities are favored by large portions of the Fermi
surface separated by the special wavevector, q0, (Fermi surface nesting)
which is more probable for quasi-one- or two-dimensional metals, as the
Fermi energy then becomes independent of some component(s) of the elec-
tron momenta. For reviews of neutron studies of quasi-one-dimensional
metals see Comes and Shirane (1979). Additional interest in the study
of these materials derives from the fact that there are strongly
competing tendencies among the conduction electrons to form charge den-
sity waves, spin density waves and superconductivity. The successful cul-
mination of the latter tendency has been recently confirmed in certain
quasi-one-dimensional organic metals.

Of the various quasi-two-dimensional CDW systems, the 2H polytype of
TaSe2 has been the most thoroughly investigated. Early electron diffrac-
tion studies (Wilson et al. 1975) showed sattelite Bragg reflections
appearing at T < T o = 123K, and presumed to be commensurate with the aver-
age lattice. A subsequent higher resolution neutron study (Moncton et
al. 1977) showed the sattelites to be incommensurate near T o with a tem-
perature dependent wavevector, q(5=(l-6)a /3. Moncton et al. went on



to study the temperature dependent amplitude of the CDW and to discuss
the mechanism for 6(T) and the "lock-in" transformation at Tc=90K below
which (S(T)=O. The latter discussion was extended by McMillan (1976). The
key point to recogni'.e is that purely sinusoidal modulation (eqn. 2 with
constant <J>) cannot 'cake advantage of the periodic potential of the aver-
age lattice. However with the proper spatial variation of (*>(r) it is pos-
sible to produce large commensurate regions separated by narrow domain
walls in which §(r) changes rapidly. Model calculations suggest that
under certain conditions an ordered array of these domain walls, which
McMillan called discommensurations (D.C.'s) would be the state of lowest
energy. The position of the dominant Bragg sattelite would be determined
by the density of D.C.'s.

Figure 1 shows 5(T) as obtained in an even higher resolution study using
x-rays by Fleming et al. (1980). In addition to confirming the lock-in
transformation found with neutrons, the new study established the
existance of two distinctly different incommensurate phases. The fully
incommensurate phase obtained on cooling from high temperatures incorpo-
rates three incommensurate wavevectors directed along alternate 6-fold
axes of the hexagonal reciprocal lattice with magnitude q.. On warming
from the commensurate phase an additional phase is found in which one of
the three wavevectors remains commensurate. In terms of a real space de-
scription, the latter phase involves a parallel stripe D.C. pattern,
whereas the former requires a hexagonal honeycomb array of D.C.'s. Di-
rect confirmation of the D.C. model has come from recent dark field elec-
tron microscopy studies (Fung et al. 1981) and (Chen et al. 1981).

3. Dynamics

Neutron studies have also been instrumental in studying the dynamics of
displacive incommensurate phase transformations. The form of the peri-
odic displacement in eq. (2) suggest that we view the transformation as
a condensation or "freezing-in" of a phonon with wavevector qo, which
migh occur because the phonon frequency U)(qo) vanishes. Such "soft node"
transformations are reviewed by Cowley (1982) in this volume. In the
case of a CDW transformation, the screening effects discussed previously
can be reflected in aj(qo) through giant Kohn anomalies (Kohn, 1959) which
have been observed spectacularly in the quasi-one-dimensional metal KCP
(K2Pt(CN)6Brx). (Renker et al. 1974) and (Carneiro et al. 1976). Sub-
stantial, but incomplete phonon softening is observed in the quasi-two-
dimensional CDW materials as well (Moncton et al. 1977). However, the
best example of a soft mode incommensurate transformation occurs not in
a CDW metal but rather in the insulator l^SeC^ (Iizumi et al. 1977) as
shown in Fig. 2. This dispersion relation is.essentially the Fourier
transform of the interplanar forces, from which we can deduce that the in-
stability in l̂ SeOi,. results from anomalously large and temperature depen-
dent forces between planes of atoms which are third-nearest neighbors. On
a fundamental microscopic level, coulomb (dipolar) forces presumably play
a decisive role, although model calculations are far from simple. (See,
for example, Hague et al. 1978).

But what about the dynamics of the incommensurate phases themselves? Be-
cause it should be possible to add an overall phase shift to eq. 2 while'
leaving the energy unchanged it follows that there should appear a new
type of gapless long wavelength excitation (a phason) which represents
slow spatial variations in <J> (Overhauser 1968). In the simple soft mode
picture presented above the added presence of static displacements below



Fig. 1. Temperature dependence of incommensurability, <5, in 2H-TaSe2.
On cooling only the fully incommensurate phase appears. 'On warming an
additional stripe phase is present between TCS=93K and TS£=112K. (After
Fleming et al. (1980)).

REDUCED wavE-VECTOR l

Fig. 2. Dispersion of the soft phonon branch in I^SeO^, leading to an
incommensurate phase below To=130K. After Iizumi et al. (1977).

T o require new harmonic modes to be constructed from linear combinations
of phonons with wavevectors (q"+q"0) and (q"-q"0) respectively. The
result is an upper branch for which

u+(r,t)

and a lower branch for which

(3)

u.(r,t) (4)

Comparision of eqs. (2-4) shows that the upper branch is equivalent to a
modulation of the amplitude of the static displacements, while the lowej:
branch represents a modulation of their phase. Although phasons exhibit
linear acoustic-like dispersion, 0)(q)=vq, the velocity v has no relation
to the velocity of sound and the phasons are not to be confused with
acoustic phonons, as Fig. 3 makes clear. It has proven difficult to
unambiguously identify these phason modes with neutron scattering, taut
recently there have been reports of their observation in two incoî tfien-
surate insulators, biphenyl (Cailleau et al. 1980) and ThBr4 (Ber-aard et
al. 1981).

The foregoing discussion concerned phason modes in displacive incommensu-
rate structures. In intergrowth/overgrowth structures the pha^on does



Fig. 3. Schematic illustration of the dispersion relation for a material
undergoing an incommensurate displacive phase transformation. (a) soft
branch with minimum at qo above To; (b) splitting of modes into a gapless
'phase' branch and an upper 'amplitude' branch below T o.

represent (essentially) an acoustic mode of the sublattice. These modes
have been studied extensively in Hg3_(5AsFg (Heilmann et al. 1979) and
detailed discussions of their dispersion and damping have appeared
recently (Axe et al. 1982).
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