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Abstract

Many of the current chemical kinetics textbooks and kinetics papers treat
atomic and molecular recombination and collision-induced dissociation (CID)
as occurring only via sequences of two-body collisions. Actually, there is con-
siderable evidence from experiment and classi.ca.l trajectory calculations for
contributions by true three-body collisions to the recombination of atomic
and diatomic radicals, and that evidence is reviewed. Then, an approximate
quantum method treating both two-body and three-body collisions simulta-
neously and on equal footing is used to calculate cross sectioné for the reaction
Ney+ H = Ne+ Ne+ H. The results provide clear quantum evidence that
direct three-body collisions do contribute significantly to recombina,ti;m and
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I. INTRODUCTION

Atomic and molecular recombination and collision-induced dissociation (CID) reactions
comprise two of the most fundamental types of chemical reactions. They are important in
all gas phase chemistry; for example, about half of the 196 reactions identified as important
in combustion chemistry are recombination or CID rea,ct.ions.1 The overall chemical equation

for any recombination reaction is the forward direction of
A+B+ M= AB+ M, (1)

where A and B are any atoms, molecules, or radicals for which AB has bound states, and
the third body M is any species that can carry away the excess energy. The overall equation
for CI]j is simply the reverse direction of Reaction (1).

In most of the chemical kinetics literature, both textbooks and journals, recombination |

is assumed to proceed via two collisional mechanisms. One of these is the Lindemann energy

transfer (ET) mechanism,?

A+B= AB", (2)

AB*+ M = AB+ M. (3)

Here épécies with an asterisk, such as AB"‘, represent'metasté,ble intermediates. The other
mechanism is the bound complex (BC) mechanism (also known as the radical-molecule

complex, exchange, or chaperone mechanism),?

A+ M= AM", 4)
AM*+ M = AM + M, (5)
AM + B= AB+ M. (6)

An equivalent set of BC equations involving the species BM and BM™* can also contribute.
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Clearly, the BC mechanism can only be important if M has enough attraction for A
and/or B to produce a significant population of the AM and/or BM intermediates of the
mechanism, and in the past there has been controversy*™® over the relative contributions of
the ET and BC mechanisms. We consider that issue in future publications.”

The reader should note that both the ET and the BC mechanisms proceed via sequences
of two-body collisions. In the present work, we consider the question of the role and impor-
tance of direct three-body (3B) collisions (or half collisions), i.e., of Reaction (1) happening
directly in one step. To keep this present problem manageable, we restrict the discussion to
cases in which M is sufficiently inert that the BC mechanism contributes negligibly. Then,
we can directly compare the contributions of the ET and true 3B mechanisms. The present
paper als§ emphasizes the case in which A and B are neutral, but it applies fully if one is an
ion. It does not directly apply if they are oppositely charged ions, but some of the concepts
are still relevant. |

Before reviewing work on the 3B question, we note that, because recombination and
CID are just the revérses of one another, the time-reversal invariance of quantum mechanics
requires that both reactions involve exactly the same scattering matrix. As a.consequence,
their croés sections are directly related by mjcroscopic reversibility, and their rate constants
are related by detailed balance. Hence, if recombination proceeds only via a sequence of
two-body collisions, then CID must proceed by' exactly the reverse sequence of two-body
collisions. Conversely; if CID can ‘.proceed directly with a significant cross section, then the
rate of direct 3B recombination musf also be significant.

Many early works on recombination explicitly aliowed true three-body collisiéns by es-
timating the likelihood that, while a pair of atoms or molecules were in the process of
colliding, a third atom or molecule would collide with them.® However, with only crude
molecular diameters and times of simple direct collisions, these estimates were, at best, of
only order-of-magnitude accuracy. Also, if one considers the intermediates AB* in the ET
mechanism to include all pairs regardless of their lifetimes, then in principle the ET mech-

anism also includes the true 3B collision contributions. Several authors® did that, but their
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estimates were also crude. Other authors!® used transition state theory with an unspecified
mechanism to sidestep the issue of the importance of 3B collisions.

In the 1960’s Smith!! formulated a theory of recombination in which the rate is the sum
of ET and direct three-body (3B) rates. In it, the ET rate depends directly on the collision
lifetime of the AB*, and Smith pointed out that it can give a negative contribution at some
energies. We!? found, in accurate calculations on Reaction (2) for the case in which A is
H and B is O,, that the negative contribution can be significant, at least for low angular
momenta. Since rate constants must be positive, this negative contribution must either be
unphysical, as some'®!* have concluded, or else there must be a significant, compensating
true 3B contribution to keep the total contributions positive at every energy. Until the
present work, no estimates of the 3B contributions to Smith’s formulation had been made
that were accurate enough to answer this question.

An influential development was the 1968 “orbiting resonance theory” (ORT) of atomic
recombination by Roberts, Bernstein, and Curtiss (RBC).!*¢ They assumed the ET mecha-
nism and argued that “for most recombination reactions” the contribution of nonresonant,
direct three-body collisions is “small compared to the resonance contribution.” Bunker!¢
hé.d already noted that, in classical calculations, the orbiting states of AB at the top of
angular momentum barriers are important. RBC noted that, when A andB are atoms, their
only.meta;stable states AB* are the resonant quasibound (QB) states tfapped behind an
‘angular momentum barrier, and they asserted ‘that recombination is domiﬁated by them .
They assumed that these AB* a;re formed by quantum tunneling through the barrier and
that Reaction (2) maintains equilibrium for all contributing resonances. With those assump-
tions and inclusion of only the forward direction of Reaction (3) RBC were able to calculate
recombination rate constants, and the initial results agreed quite well with experiment.

The RBC theory is very appealing. It provides a simple way to picture recombination
reactions and allows calculations without the complexities of 3B collisions. As a result, it has
had a great influence on how recombination reactions are viewed and treated. Despite the

fact that more recent calculations (discussed below) have not been very successful, it contin-
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ues to be used.!” More importantly, from many discussions with colleagues, it appears to us
that a majority of physical chemists now view recombination as happening via the RBC-ET
mechanism. Whole books!® are now being written on the subject of CID and recombination
which do not even mention the possibility of 3B collisions. Looking at textbooks, we have
found one!® that goes so far as to assert that 3B contributions are small, then does a 3B
estimate, gets a result larger than experiment, and then essentially throws that result away.
Other textbooks?® are so indefinite that readers can continue with whatever preconceptions
they have, some?! do better by giving the older® treatment of 3B collisions as well as the
ET and BC mecha.nirsms', and one?? clearly attributes atomic recombination to three-body
collisions but does not give a detailed treatment.

“Actually, there is a considerable body of evidence that suggests that the RBC-ET mech-
anism is inadequate and that 3B collisions cont;ribute, as we now discuss. As the first tYpe of
such evidence, we note that, not long after the advent of the RBC theory, it was discovered?®
that it predicts a very non-statistical ortho-para ratio of the H; formed in the recombina-
tion of H atoms. However, experiments?? at bot‘h high and low temperatures gave statistical
ortho-para ratios-in clear disagreement with the prediction. These results did not, however,
change many op_'inions' .beg:ause of a possibility that rapid exchange reactions betweén H
atoms and newly formed, highly vibra.tioné,lly excited, H; molecules were scra,mBling.the
ortho-para ratios in the experiments.. | | |

A second tjpé of ev‘ide‘nce for 3B §olﬁsion contributions comes from the pressure depen-
dence of the reaction rates. To discuss that, we first consider the kinetics of recombination
of the ET mechanism using Equations (2) and (3). Assuming the well-known steady-state
approximation for the concentration of intermediates AB* (which is more accurate than the
equilibrium approximation used by RBC), onev finds, neglecting the reversé of (3), that the

concentration of intermediates is

[AB"] = k;[A][B]/ (k-2 + ks[M]), (7)

and that the rate of formation of AB is




d[AB]/dt = kess[A]B], (8)
where the effective second-order rate constant ks is
kess = kaks[M]/ (k-2 + ks[M]). (9)

The subscripts on the rate constants refer to the numbered equations and their reverses,
and the square brackets are concentrations. (Actually, the rate constant, symbolized by
one term here, is a sum of such terms, one for every metastable state AB*.) Noting that

k_; = 1/1,, where 72 is the AB* lifetime, one can rewrite Eq. (9) as
kess = Kaks[M]/(1 + 72ks[M]), (10)

where K; = ks / k_, is the equilibrium constant the formation of the AB* state. At small
[M] (low pressure), the denominator of Eq. (10) becomes unity, and ks is directly pro-
portional to [M], giving pure third-order kinetics. At intermediate pressures, k.ss vs. [M]
displays curvature known as “falloff.”?® At large [M], for all AB* with significant lifetimes,
the ABx* concentration of Eq. (7) decreases, the second term in the denominator in Eq. (10)
dominates, and the [M] cancels causing k.ss to become independent of [M]. (In thisfegime,
equivalent treatment of CID giveé unimolecular kinetics.) We note at this point that direct
3B collisions via Eq. (1) give pure third-order kinetics for _recombinatién at all pressures.
' ‘The ET mechanism can only give third-order kinetics at hi‘ghb presstire if states AB* with
negligible ]jfetimds, i.e., true 3B collisioﬁs, are included. | |

Experimentally, for systems in which AB is a large polyatomic molecule, so that A
and/or B are polyatomic molecules, ks is observed®® to be independent of [M] and CID
to be unimolecular over a large range of [M]. Hence, as shown by Klots,?” the direct 3B
contributions are negligible compared to the ET contributions for such systems, and the
appropriate theory is a generalization of the ideas of RBC.!® This is because such AB have
so many long-lived vibration-rotation states lying above the dissociation energy that the
rates are limited by vibrational redistribution. However, in the important case in which

A and B are both atoms, k.ss is linear®® to very high pressures (kbar) and only departs
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from linearity because of diffusion limiting and cage (geminate recombination) effects,?®
not because of its denominator. That implies that atomic recombination is dominated by
AB* lifetimes that are too short to be RBC’s quasibound states; instead, they are true
3B collisions. For cases of intermediate complexity, in which B is a diatomic and A is an
atom or diatomic, the observed k.s; shows curvature but still rises steeply until diffusion

% on such systems using only the ET

limiting pressures are reached.?*?° The best calculations®
mechanism with finite lifetime AB* states gives a k.ss which is too small at high pressures.
Hence, for such systems both 3B collisions and ET intermediates with significant lifetimes
are making appreciable contributions. Such pressure dependence has been known for some
time; as far are we know, its implications were first clearly pointed out in our preliminary
account of the present work.3! In the remainder of this paper we restrict discussion to cases
in which A and B are atoms or diatomic molecules.

A third kind of evidence for true 3B collisions comes from classical mechanics which has
often been used to study recombination and CID. Quantally, the quasibound states of the
RBC theory can be formed by tunneling through the angular momentum barrier. However,
classically, no tunneling is allowed, and the classical analogs of the quasibound states, the
rotationally trapped states, act like bound states; they can only be formed or dissociated
via true 3B collisions. Despife this fact, classical calculations of both recombina,tion_32 and
CID® give rates that agree veryivell with experimeﬁt! An excellent example is the work
of Schwenke®35 who did a careful study of the reconibination of H atoms in H,. After
constructing a new H, potential energy sﬁrface, he first® assumed the RBC mechanism,
accurately calculated the tunneling rates in Eq. (2), and uéed classical mechanics to calculate
the rates of Eq. (3). The resulting recombination rates were a factor of two to three smaller
than experiment at all temperatures. Then, he did a second calculation® in which he also
included the classical 3B collisional rates of formation and dissociation of both the bound -
and quasibound states and solved the master equations for the kinetics; the results agreed
well with experiment! Furthermore, he found that omitting the tunnéling rates essential to

the RBC mechanism reduced the calculated rates by less than 14%. He concludes that, “at
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least for the temperature range of the present study, the fundamental assumption of the
ORT, namely that recombination takes place predominantly via a sequence of bimolecular
collisions, is invalid. Instead we find that direct recombination due to three body collisions
is the dominant pathway.” Unfortunately, his study and conclusion have received too little
attention.

Similar conclusions and additional information come from many detailed master equation
studies of CID and recombination of H atoms.3¢3° All these included direct 3B collisional
rates obtained from classical trajectory or model-ca.lcula.tions. Pritchard and coworkers®7
found that the contribution of tunneling is negligible, the main contribution is 3B recom-
bination, and that it is important to include both forward and feverse rates between all
possible states of Hy “in direct conflict with orbiting resonance theory (ORT).” Kung and
Anderson®® found large contributions by direct three-atom collisions. Dove and Raynor®®
found that the relative contributions of tunneling and 3B collisions depended. on the pressure
and thé,t tunneling was often negligible. In a similar study of the recombination of H et with
He, Russell and Shyu?® found that inclusion of the quasibound states made only a 10 to
20% difference.

Clearly, it would be best to compare the RBC-ET and true 3B collision mechanisms by
doing exact quantum calculations of CID and recombination. Howéver, such calculations
are difficult, ‘a.x.ld none have been reported. Authors‘u have reported exact CIDY calculations
ﬁsing 3.collinea;r atoms, and théy found that the calculations had to be carried to Ia.rge
distances to separate the bound from the continuum states. They also found significant
probabilities for direct 3B collisions, but, because the quasibound states of the RBC-ET
mechanism do not exist in collinear calculations, such calculations cannot compare the RBC
and 3B mechanisms. |

In the full three-dimensional physical space, several calculations using Faddeev-type
theories*?™5 have been reported. Most*?*3 were not accurate enough to address the present
question. One** did find that true 3B collisions are required to explain the recombination

of H atoms in He at extremely low temperatures, and one*® is approaching the accuracy
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needed for applications to the present question. Also, a recent calculation for the CID of H,
by Ar appeared*®, which found direct dissociation, but the distorted-wave-Born approxima-
tion used is too crude for present use; the potential is involved to high orders in the CID
process.

Miller'® has proposed a flux-flux correlation function theory for recombination which
includes AB* of all lifetimes, so that it includes both the RBC and 3B mechanisms, and it
has been applied to H + O; recombination.!* However, in its present form, an integral part
of the theory is the strong collision approximation which assumes that every intermediate
AB* is deexcited to a bound AB on every collision with an M. That approximation is
so crude that it severely limits the ability of the theory to address the present question.
(Future improvements*’ may overcome this limitation.) Nonetheless, in their application
of the present version of Miller’s theory to H 4+ CO recbmbination, Qi and Bowman*® saw
evidence of nonresonant (true 3B) contributions at high temperatures. At low temperatures,
this particular recombination is dominated by resonances because, for all angular momenta,
there is a barrier in the potential energy surface (PES) and only the resonant states can get
close enough together to recombine.

Although the large distances required will make the calculations difficult, we expect that
exact 3D quantum calculations of recombination and CID for 3 atom systems will soon begin
appearing. Some of the new'methods currently in use in rearrangement scattering should
be applicable, and we are working on the problem using hyperspherical methods.*®

The one previous work that has the same purpose as the present work [i.e., to com-
pare the contributions of resonant (successive two-body) and nonresoﬁant (true three-body)
collisions] is that of Pan and Bowman® on the CID of HCO by Ar. T§ make a quantum
treatment of this difﬁculﬂ four-body problem tractable, they used sudden af)proxima,tions on
several variables, averaged the potential over one angle, and used L? vibrational functions to
discretize the continuum. They find both resonant and 3B contributions with the resonant
contributions dominating. However, part of this result could be due to the aforementioned

barrier in the HCO PES. Barrierless systems may be less resonant-dominated.
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Another approximate method that should be mentioned is that of Nobusada and
Sakimoto.?! They studied the CID of H, by He, treating rotation with the familiar®? Ro-
tationally Infinite Order Sudden (RIOS) approximation and the two remaining coordinates
via a hyperspherical coupled channel (CC) method. Unfortunately, they introduce walls at
large distances to discretize the continuum in the very region where we want to compare the
roles of the quasibound and continuum states, so their method cannot be used to answer
the present question.

In the present work, a brief account of which has already appeared,3! we report approx-
imate calculations of CID aimed at comparing the contributions of the sequential two-body
mechanisms of the RBC-ET type with those of true three-body (3B) collisions. We con-
sider three-atom systems and use the VRIOS approximation of Pfeffer®®, in which both the
Vibrational and Rotational motions are treated in the IOS approximation. While this ap-
proximation is very simple, it has the advantage of exactly conserving probability and of
treating all the bound, quasibound, and continuum states of the diatomic simultaneously
and on equal footing, making it easy to compare their contributions. Sakimoto®* has also
reported VRIOS calculations of CID. However, he only calculated the total dissociation cross
section; the present problem requires more detail.

In the next Section we review the VRIOS approximation and give the formulas needed
for calculations. Then, in Section III we describe our calculations and report the results for
the CID of Ne; by H atoms. Section IV contains our conclusions. The present paper reports
the calculated integral cross sections; in the following paper® rate constants are calculated
from those cross sections, and the kinetics of CID and recombination for this system are

studied using a master equation approach.

II. THEORY

In this section we consider a system composed of three atoms, A, B, and M, and outline

an approximation in which both the vibrational and rotational motions of AB are treated

10




in the infinite order sudden approximation. When those vibrational or rotational levels are
widely spaced in energy, the resulting VRIOS approximation will be crude except at high
energies; however, when they are closely spaced, it, like the familiar RIOSA, is expected to
give qualitative to semiquantitative accuracy, and it has two particular advantages: It exactly
conserves probability, and it treats the bound and continuum states of AB simultaneously

and on the same footing.

A. Formulation

We use the set of Jacobi coordinates in which r is the vector from A to B, R is the vector
froni the center of mass of AB to M, and v is the angle between r and R. We only need
the coordinates for this one arrangement. As Wei, Alavi, and Snider®® have pointed out,
one gets the complete answer using only one arrangement if the calculations are carried out
exactly, and one must be careful to avoid double counting if more than one arrangement is
used. In practice, describing the bound and quasibound states of AM and BM accurately
using only the present coordinates would bé very difficult. However, as explained in the |
Introduction, this discussion is restricted to systems in which the bound and quasibound
states of AM and BM and hence the BC mechanism contribute negligibly. |

We now summarize a derivation of the VRIOS®® approximation that is applicable to situ-
ations in which all three atoms may be unbound using notation similar to our éarlier RIOS®?
work, so that many of the same formulas may be used. It is assumed that the scattering
takes place on a single, nondegenerate potential energy surface (PES). The objective is to

solve the Schrédinger equation,
(E—H)¥ =0. ) (11)

The Hamiltonian here is

1? H* L?
A R+ + Hap + V(R~ ra7)a (12)

H= -
2pum-aBR OR? 2prr-apR?

where H4p is the Hamiltonian of an isolated AB subsystem,
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K 5 Jig
= .—2[1‘431'%,'*- 2[14 r2

+ v(r). (13)

Here v is the AB interatomic potential, and V is the rest of the PES, so that the total PES
is V4 v. ppy-ap is the M — AB reduced mass, si4p is the AB reduced mass, J4p is the AB
angular momentum, and L is the orbital angular momentum of M relative to AB.

We use space-frame coordinates and couple the rotational wavefunctions via the Clebsch-
Gordan theorem in the usual Way52 to form eigenfunctions |jIJM > of the total angular
momentum. We also use the complete set of eigenfunctions x,;(r) for the radial motion of
AB, satisfying

2 g2 2:0s
mr—r+ A () - elsr) = 0 (14
Here the index v is discrete for the bound states but continuous for the AB scattering states.
The x are normalized to unity for the bound states and normalized to a delta function on
the wavenﬁmber of the AB relative motion, & = (2p4p¢€,;/h%)2, for the continuum states.

We expand the total wavefunction ¥ for total angular momentum J in the complete set

of products as
= 3 (Br) G B)Xvnin (M)|inlnd M >, (15)

where 1 = (Vy,Jn, ln) is & composité.index, and 7 is the composite index of the incident
state. The sum here includes an integral over all the continuum states of AB. Substituting

this into Eq.(11) and projecting with state f gives,

&2 R l 1 2

where k% = zﬁﬁh;—‘ﬁ(E — €,j;). The index M is suppressed here because the equations
are independent of M. Although these look just like the familiar coupled channel (CC)
equations, they cannot be directly solved by standard (matrix) numerical methods because

of the uncountably infinite set of continuum states coupled together. Direct solution would

require use of the techniques mentioned in the Introduction.
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The VRIOS approximation proceeds as follows. We replace two operators in Eq. (12)

by eigenvalue forms; namely,

L? ~ B3 + 1), (17)
and
Hyo ~ & (18)
That replaces Equation (11) by
(E - IT¥(Ryr,7) =0, | (19)
or, with I' = g/R,
o+ B WD 2ecanyp R =0, )

where k? = 2‘—‘-“%;-4—”1(E — &). Now, Eq. (20) is a single, uncoupled equation, and r and v
have become parameters. For any given values of them, the equation can be solved subject
to usual scattering boundary conditions to generate phase shifts ’hE (ry7). (We note that
R >> r is required to apply the asymptotic boundary conditions.) From the phase shifts

one constructs parameter-dependent Scattering and Transition matrices as

SH(r,7) = exp[2inf(r, )] - @)
amd |

TH(r,y) =1 - 8%(r, 7). (22)

With this, one finds that, as is familiar from the RIOS®? approximation, the matrix

element,
G1(R) = i < vyjsly IMIg¥(Ry 7, ) IWiiliTM >, (23)

is an approximate solution of the complete, continuous, infinite set of CC equations. To

demonstrate that, one takes this matrix element of Eq. (20), inserts closure, and obtains
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& -, [(I+1)
GEtF - —m

1G5 (R) = P42 5 < ity TV Ininled > GR(R), (24

n
which is the complete set of CC equations with the two obvious approximations. The VRIOS

approximation to the physical Transition matrix is
T (vriflslvis din k) = 8054 < wgg l IMITH (r, )| wigiliTM > (25)

All desired scattering properties can be calculated from this transition matrix.

B. Cross Sections

We note that, in the VRIOSA as in the RIOSA, many simplifications occur in the
calculation of scattering amplitudes, differential cross sections, integral cross sections, and
total cross sections. For this paper our interest is in integral and total cross sections, and
we only give the formulas for those. More detailed derivations are in our earlier paper.®?

It is computationally convenient, after calculating the T ’_‘T(r, 4) at an array of r and ¥

points, to calculate the following:
T3 () =< Xogig [T (1) xwisi > | (26)

where now f = (vy,js), etc. These integrals over r are well defined if at least one of the
X is square integrable (bound). To be able to use the standard formulas, we carry out the
calculations for both bound and continuum Y,,;, but only for bound x,,;;. Then, when lis

chosen to be Iy, the degeneracy-averaged iﬂtegral cross section formula reduces to®2
o(vsis < viji) = (x[k) ;(27-1- VPilvsis = vigi) (27)
where the opacities are given by
Plvsjs — viji) = Zrll_l-;'l < jpml TH(n)ljims >pr [P (28)

We note that because the x,; (and hence the indexes f and :) depend on j as well as v, one

does not get the full factorization of the rigid rotor RIOSA%? in which all cross sections can
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be calculated from those for j; = 0. However, these matrix elements are diagonal in m; and
are carried out in a body-frame where 7 is the first angle of the spherical harmonic functions
involved, so they are still simple. It is convenient make a,,Legendre polynomial expansion of

TH as
T (7) Z:t"‘LPL(cosv), (29)
where

= (L+3) / TH ()P (cos 7)d cos . (30)

These are simply evaluated via one-dimensional Gauss-Legendre quadrature. Then, substi-

tution of Eq.(29) into Eq.(28) gives the opacities as
’P"(Vf],f — l/,],) = Z(QL + 1 IC(]fL]u OOO)ZItHL 2 (31)

so that all cross sections are easily calculated from the ¢ matrices. In calculating the cross
sections, we use k = k;.

The total integral cross section similarly simplifies. If one sums and integrates Eq.(27)
over all final states and uses the completenéss relation and the spherical harmonic addition

theorem, one obtains5?

oror(vigi) =< Xv;je(r)'o'tot(r)l_?(wji (r) > (32)
for the total cross section out of any given initial state, where

1 1
Otot(T) = 3 /_1 a(r,v)d cos, (33)
and where
4n = 2
o(r,y) = () (1 +1)sin (7 (r, )] (34)
t 7

This last equation is the simple integral cross section formula for the scattering of spherical

particles. This simple, alternate way to calculate o4,+(¥;j;) is a direct result of the fact that
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the VRIOSA, like the RIOSA, exactly conserves probability, and it is very useful in the
presént problem because it allows testing the completeness of the bound and continuous
basis used by comparing the o, of Eq. (32) with the numerical result of summing and
integrating o(vsj; « viji) over all final states in the basis.

We note at this point that if the initial and final vibrational states are both bound
states, the o(vsj; « viji) from Eq. (27) have the usual state to state integral cross section
interpretation, but if the final state is a continuum state of AB, then the cross section
calculated via this formula is really differential in &, and might better be written as do/dx

for the transition. Integration of it over & yields the bound-free integral cross section via
o(js « viji) = / o(vsjs + viji)d. (35)

If the integration range chosen here is (0, 00), on obtains the bound-free integral cross section,
but one can also choose to integrate only over shorter intervals to pick out the contributions

of particular resonances or certain relative energy regions.

III. CALCULATIONS AND RESULTS
A. System and Potential Energy Surface
The specific sjsterﬁ studied in this work was
Ney+ H = Ne + Ne+H, (36)

that is, A = B = Ne and M = H. While it would admittedly be difficult to study
experimentally, it is a real syétern, and it is simple enough to allow detailed calculations
to be carried out and analyzed. As will be shown in the following paper®, results for this
system are more applicable to systems containing strongly binding atoms than one might at
first think. Although Ne; lacks the deeply bound states of a chemically bound molecule, all

evidence suggests that such deeply bound states are accessed only by vibrotational relaxation
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anyway. The processes that are key in this system must also happen among the highly excited
states of chemically bound molecules in their CID and recombination.

H atoms were chosen as the third body because the NeH potential well is so shallow that
it has no bound or quasibound states. That means that the BC mechanism is rigorously
excluded from contributing, and the only two mechanisms possible are the ET and 3B
mechanisms. This clarifies the interpretation of the results and allows a direct comparison
of the two mechanisms.

The isotope ®Ne was chosen for the present calculations because it was found that,
for the more common isotope, the diatom **Ne; is extraordinary (and somewhat similar
to ‘He,) in having a state (v,j)=(2,0) bound by only 0.032 Kelvin®” whose wavefunction
extends to such large distances and couples so well to the 3B continuum as to make it less
representative of a typical diatomic and thus make any conclusions less general. (For weakly
bound systems it is convenient to measure energies in Kelvin (K), so that energies are really
E/kg, where kg is Boltzmann’s constant.)

We note that the physical picture of the CID or recombination process provided by the
VRIOSA is that, while two Ne atoms are interacting, an H atom comes rapidly past, collides
with them, and causes a transition. In this time-independent formula.tioh, no:time sequence
is impﬁed, and the Ne atoms can be at any distance and in any stage of a bound vibration
or a Ne— Ne collision when the H coilides with them. The levels of 1sN €y are rather closely -
spa.éed, and the suddén approxiﬁation is expected to be valid for transitions such that5®
Ae < hfr, where Ac is the change in the relative energy of the Ne — Ne pair, and 7 is the
lifetime of the H — Ney collision. At the energies (~30K) of primary interest, 'r is about 0.3
psec, which gives the sudden condition as Ae < 27 K. As it turns out in the calculations
and results discussed later in this paper, this condition is well satisfied for all the transitions
that have large enough cross sections to be important to the kinetics. Hence, we expect the
results to be fully semiquantitatively accurate; i.e., based on previous experience, we expect
the larger cross sections and the resulting kinetics to be accurate to within about 20%.

All the interactions in the Ne; H system are weak van der Waals interactions with shallow
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attractive wells. For such systems at the low energies of interest here, Meath and Aziz*®
have shown that the non-additive three-body terms in the PES largely cancel each other
and contribute only a few percent of the PES. Consequently, we have taken the PES for
this system to be the pairwise additive sum of interatomic potentials and used the best
semi-empirical potentials available; it should have more than enough accuracy to answer the
question at hand.

For the Ne — Ne interaction, we used the Aziz-Slaman®’ potential, which has a well
depth of 42.25 K. It was generated directly from a routine kindly sent us by them.

For the Ne — H interaction, we used a potential due to Tang and Toennies.®® Using the
parameters in their paper, the best agreement with their table was obtained by truncating
their sum at 2n = 16, and this gave a well depth of 17.29 K. To avoid its divergences at small
r, their potential was replaced at distances less than 0.5a, by a simple repulsive exponential
potential, v = A exp(—br), with, in atomic units, A = 11.7125866 and b = 1.887834483. We
carefully checked both the behavior of the nodes of the NeH wavefunctions and the zero-
energy phase shift®! and confirmed that the. NeH has no bound states and 1o quasibound

states.

B. Ne— Ne States

All the states of 18Ne, were accurately calculated ﬁumérica]ly; The energies and wave-
functions were calculated with the reﬁorma.lized Numerov method,®? and the lifetimes (time
delays) were directly calculated with the log derivative method.663 The properties of all 18
long-lived states are shown in Table I; there are 8 bound states, 3 quasibound (QB) states
trapped behind angular momentum barriers, 5 broad above barrier (BAB) resonances, and
two barrier slowing (BS) resonances caused by slowing due to a broad low barrier. Only
even j's occur because ¥ Ne atoms are spinless bosons. As shown in the table, the e-folding

lifetime of the resonances, 7., is one-fourth the maximum lifetime, 7,0z, and their width is

I'="Hh/7.5%




Plots of a few of the Ne; wavefunctions are in Figures 1 and 2. In Fig. 1(a) are the
two bound states for j = 2 and the resonant scattering state. One sees that the amplitude
of the resonant state is small inside the well region; the large resonant amplitude of the
wavefunction occurs atop and outside the low centrifugal barrier at this j. Hence, this is
not a quasibound state but seems to be a growth of amplitude due to the slowing by the
barrier. We note that the energy of the resonance (0.12 K) and of the barrier maximum
(0.12 K at r = 18.3ao) is so small that it can hardly be distinguished from zero (the dotted
line) on the plot. Fig. 1(b) is a plot of wavefunctions for j = 6. The maximum lifetime of
the quasibound (1,6) resonant state occurs at an energy of 1.98 K which is well within its
width (0.39 K) of the barrier maximum of 2.07 K. As a result, the maximum amplitude of
the wavefﬁnctioh occurs just inside the barrier, and that amplitude is only a factor of two
larger than the amplitude outside the barrier. The wavefunctions of both the narrow and
broad resonances for j = 10 were plotted in a previous paper® and are not repeated here.
Fig. 1(c) is a plot of a wavefunction near the center of the § = 14 broad above barrier (BAB)
resonance. This is the longest lived of the BAB resonances; one sees that the amplitude in
the well region is again only a factor of two larger than the asymptotic amplitude-there is
little localization.

Figure 2 is a 3D perspective of the Ne; scattering wavefunctions for j = 12 as a function
of energy as well as distance. It allows one to see clearly the amplitude of the wavefunction
in the well region as a function of énergj, and the resonant quasibound j = 12 state stands
out clearly.

In studying the resonances it is also instructive to plot the collision lifetime or time delay
versus energy. Such plots for j = 2 and for both the narrow and broad j = 10 resonances
were presented in our previous paper;® that for ; = 4 is shown in Fig. 3. One sees a
fairly narrow peak in 7 at low energies. This BS resonance, like that for j = 2, is simply
caused by slowing due to the broad barrier; the wavefunction (not shown) at small r is
always small. Note that at larger energies 7 is negative over a large energy range. 7 is the

difference’ between the total lifetime of the interaction and the time 7,,,, it would take for
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the two atoms to pass each other if the interaction potential were zero, and these negative,
nonresonant regions mean that at these energies the collision is taking less time than it
would if there were no interaction at all. We remark that for j = 0 there are no resonances;
T is negative at all energies.

To understand how "resonant” a resonance is, it is useful to estimate the zero interaction
passage time Tpqy5 at the same energy and angular momentum. Because the tail of the van der
Waals potential extends out to infinity, 7,4, is not uniquely defined, buf it can be estima.ted'
as the time it takes noninteracting atoms to cover the distance where the interaction is large
enough to be significant. From classical or semiclassical phase integrals,l! the time two

noninteracting atoms spend within a distance r; of each other is
1
Tpass = 2(rf — b%) [va (37)

where b = A( i+ 3)/(2raB ¢)? is the impact parameter and v, = (2¢/p4B)? is the asymptotic
relative velocity. To be definite we choose r; to be the larger of b + 0.2a¢ and the distance
at which the 7 with the interaction turned on has accumulated 0.99 of its total value. The
resulting values of 7p,,, are in the last column of Table I. One sees that they vary qﬁite a
bit with energy’a.bnrd angular momentum. One also sees that, for most of thé resonanées, Te,
which represents the average lifetime of the fesonance, is less than 7p4,s, so that the total
]ifetime.of the interaction ddes not even double the ﬁa.ssa,ge time with no interaction. The
only exceptions to this are the three qﬁa.sibound (QB) states; their average lifetimes run

from larger to much larger than 7,,,5.

C. H + Ne; Scattering

The second part of the calculation is the VRIOS determination of the H + Ne; cross
sections. The relative collision energy was chosen to be E/kp = 30K. This is the most
probable collision energy at a temperature of 30 K, where physically one can get a significant

concentration of Ne; dimers. The phase shifts nlg(r, ) were calculated accurately using the
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log derivative method®? and propagating R from 0 to 40 bohr. They were calculated (using
symmetry) at 50 of the points of a 100 point Gaussian quadrature in 7, at 81 values of r
ranging from 3.5 to 20 bohr, and all partial waves [ from 0 through 20. The radial integrals
in Eqs. (26) and (32) were performed using Simpson’s rule quadratures and the angular
integrals of Eq. (30) and (33) by Gaussian quadratures. The calculations are converged
with respect to all parameters, and they are not expensive; it requires less than 12 minutes
on a HP 735 workstation to calculate all the cross sections at this energy.

Some of the résulting do/dk are plotted versus « in Figure 4 for transitions from all
the bound states into the continuum. & is the wavenumber for the final relative Ne — Ne
motion in atomic units. To make connection to the other figures easier, we note that
e(K) = 9.62409«(ag’)?. Thus, & = 0.1 corresponds to € = 0.1, & = 0.5 to € = 2.4, k = 1.0
to e = 9.6, £ = 2.0 to € = 38.5, etc. One sees from Fig. 4(a) that several of the bound states
have significant cross sections connecting them to the j; = 0 continuum. Because Ne; has
no resonances with j; = 0 and because these do/dk spread over essentially all the energy
a.va_,ivlable, these represent direct transitions to the nonresonant three-body continuum. As |
was shown with figures in an earlier paper,® the transitions to j; = 2 also involve direct,
non-resonant three-body collisions. The do/dx for Jjs = 4 are shown in Fig. 4(b); these are
also due to nonresonant, direct three-body collisions; the peaks are broad, and their maxima
co_rrespond to a Ne— Ne relative energy of about 2 K which is much larger than thé 048K -
where the lifetime shows a resonant maximum. For highér' 4, resonant collisions contribute
mdre, but there is always a contributing broad nonresonant peak; it simply becomes more
difficult to see on the plots because their scales change to include the maxima of the narrow
peaks. For j; = 6 the sharp maximum in Fig. 4(c) is due to the quasibound (QB) (1,6)
resonance, but the nonresonant peak extending to higher energies is also clearly visible.
The contribution for j; = 8 in Fig. 4(d) is mostly due to its broad above barrier (BAB)
resonance. As shown in our earlier paper, contributions for j; = 10 come from its narrow
QB state and its BAB resonance. The contributions for j; = 12 in Fig. 4(e) are due to its

QB (0,12) resonance and a nonresonant tail. The contributions for all the higher j; shown
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come from BAB resonances and nonresonant tails, and get broad and very small by the
highest j; shown. We note that the small j; continuum states have their largest connections
to the bound states that are vibrationally excited but have small j;. For higher j; that
slowly changes until the largest connections are to bound states which have the largest j;
but have y; = 0.

We note from the parts of Fig. (4) that it is precisely at the energies where 7 is negative
that do/dx shows the broad positive contributions from true 3B collisions. This is exactly in
accord with the predictions of Smith.!! Hence, it appears incorrect to label Smith’s theory as
“unphysical.”?31* However, if one were to do calculations using Smith’s theory directly, he
would need to be careful to avoid undercounting or the problems of double counting that Wei,
Alavi, and Snider®® discuss. Our present formulation has no such problems; contributions
are counted once and only once; we only make separations to interpret mechanisms.

We note that, because the VRIOS approximation does not contain energy thresholds,
these plots extend to higher « than would be allowed by energy conservation. However, for
most of the plots, only a small and unimportant tail extends above the allowed energy. The
only exceptions to that are the plots for high j; where the whole integral over & gives a
relatively small contribution.

As can be seén from the parts of Fig. (4) the grid in « was varied from fine to coarse as.
needed to 'd&scrib'ev the various narrow resonances as well as the broad peaks. That made it |
convenient to perform the integrals of the d& /dk over & to get thé-bojmd-free iﬁtegra.l cross
sections of Eq. (35) via simple trapezoidal rule quadrature. In thi‘s process, it was observed
that the contributions of the narrow quasibound resonances approach }6 function behavior.
As the resonance narrows, the maximum in do/dk gets larger and larger, but its integral
over k approaches a constant. To see if it approaches the contribution of a bound state,
calculations were done in which the very ﬁarrow (0,10) quasibound reéonance wavefunction
was replaced by a square-integrable (L?) wavefunction which is proportionai to the QB
wavefunction out to its first node, zero thereafter, and normalized to unity. The results

are compared in Table II, and one sees that, to the accuracy with which the continuum
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quadrature was done, they are identical. Hence, the contributions of this narrow resonance
can be obtained either by integration over its continuum (scattering) wavefunctions or by
simply approximating it as a bound state.

The observation of the preceding paragraph is useful because it allows the contributions
of the quasibound states to be approximately separated from BAB and direct three- body
contributions in the cases [(1,6) and (0,12)] where the contributions are not so easily dis-
tinguished as they are for (0,10). Accordingly, that was done with square-integrable (L?)
wavefunctions which were taken proportional to their QB wavefunction out to the first node
for the (0,12) state and to the second node for the (1,6) state, zero thereafter, and normal-
ized to unity. Results using them were subtracted from the total for that j;. Representation
of the QB states by L? functions alsd then allows calculation of the cross sections for tran-
sitions from these QB states into the bound states, the other QB states, and the BAB and
nonresonant continuum states.

We note that representation by an L? function is an excellent approximation for the
(0,10), a good approximation for the (0,12), and a fair approximation for the (1,6) QB
resonances; i.e., the approximation degrades as the resonances get wider. We have also
tested the L? representation of the BAB resonances, such as that for j = 14, and found it
to give unsatisfactory results because their wavefunctions are less localized, and the results
also depénd on how many nodes oﬁe’ includes before truncating and normalizing. This is not
well defined for the BAB resonances, but it is for the QB resonances which are coﬁtinuations
of bound state wavefunctions. As a result, we treat the BAB resonances as part of the 3B
continuum. Hence, while in principle the BAB resonances and the nonresonant continuum
states can be included in the ET mechanism, in practice they cannot be included in any
accurate quantum calculations of the ET mechanism; one must have L? representations of
all the resonances used in order to carry out calculations of the second step of the process.

The resulting integral cross sections are shown in Table III. The columns are labeled by
the initial states, tﬁe rows by the final states. The last three columns are cross sections out

of the square integrable approximations of the QB states. Looking at the upper left 8 by 8
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matrix, one sees that the bound-bound cross sections have the physically expected behavior:
Vibrationally inelastic cross sections are small, and the rotationally inelastic cross sections
are largest for small Aj transitions (those for which the sudden criterion is well satisfied).
Lines 8 through 11 are cross sections for transitions between the bound and the QB states.
They are about the same size as the bound-bound cross sections. Then, lines 12 through 22
are cross sections for transitions to all the continuum states labelled by j; = 0,2, ...20 except
the QB states. Again, they are about the same size and show about the same pattern as
the bound-bound cross sections. It should be noted that the QB states have large collisional
cross sections connecting them to the continuum states. Finally, the cross sections to the
nonresonant true three-body continuum, such as states with j; = 0, 2, and 4 are very nearly
as large as those to the BAB and QB resonances. We note in passing that integral cross
sections from a high-lying bound state or a QB state to the continuum of a given j; are
very much the size expected for a rotationally inelastic cross section to the state if it were a
bound state; this confirms the QCT and model-based choices made in many master equation
studies.3673°

These observations are clarified by Table IV, There, the sums of cross sections for tran-
sitions of a pa,i‘ticular type from each of the bound states are presented; namely, the rows
are elastic, i;otal bound-bound inelastic, total bound-quasibound, total béund-BrQad above
barrier, and total -iboun'd-direct three—bbdy continuum. For the bound states that have sig-
nificant cross sections to unbound states, it is clear that éﬂ'three of these categories of
unbound. states are important; none can be omitted.

The last two lines of Table IV are a check on the numerical calculations. The upper line is
the sum of its column of Table IV (or Table III). The lowér is the total integral cross section
evaluated accurately using Eq. (32). Their very good agreement verifies the accuracy of our
numerical calculations and the completeness of the set of bound and continuum states used
in the state to state calculations; i.e., they show that neither undercounting nor overcounting
has occurred.

In preparation for the work reported in the following paper,®® the calculations reported
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herein were repeated at 14 energies logarithmically spaced from 3.7 to 887 K. In these, the
maximum [ varied from 16 to 45, the maximum j; was 28, and the maximum x was 6. At
energies above 200K the phase shifts were calculated efficiently by quadrature of the WKB

formula.®® These choices assure good convergence of the cross sections.

IV. CONCLUSIONS

In this paper we have presented cross sections that are relevant to recombination and
collision-induced dissociation (CID) for a simple reaction (36) using a simple VRIOS ap-
proximation which should be semiquantitatively accurate for it, which treats all the bound
and continuum states on an equal footing and which should not favor any type of state.

The resulting cross sections show clearly that three types of continuum states contribute
significantly to the reaction; namely, quasibound. (QB) states, broad above barrier (BAB)
resonances, and true nonreéonant three-body (3B) continuum states. All three types con-
tribute significantly to the react.ion and must be included in treatments of the kinetics as
‘we show in the following paper.5®

The present results constitute clear quantum mechanical evidence that nonresonant,
direct threé—body collisions contribute significantly to recombination and CID, at least in

simple systems.
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TABLES

TABLE I. Properties of the long-lived states of *Ne,

state (vi) €/kB (K)  Tmaz(psec) T'/kp (K) Te(psec)  Tpass(psec) Type

1 (0,0) -23.56 00 0 00 - bound
2 (0,2) -22.08 ) 0 oo - bound
3 (0,4) -18.65 o0 0 00 - bound
4 (0,6) -13.33 0 0 ) - bound
5 (0,8) -6.23 0 0 00 - bound
6 (1,0) -3.63 o0 0 0 - bound
7 (1,2) -2.72 00 0 00 - bound
8 (1,4) -0.69 o0 0 00 —  bound
9 (k,2) 0.12 36.24 0.20 9.06 1969  BS
10 (k4) 0.48 5.02 0.65 1.26 98.7 BS
11 (1,6) 1.98 78.18 0.39 19.55 13.3 QB
12 (x,8) 5.33 9764 3.17 241 11.6 BAB
13 (0,10) 244  52x10° 59x10°° 13x10° 44 QB
14 (x,10) 9.48 3.01 10.17 0.75, 97 BAB |
15 (0;12)‘ 1215 95.62 032 2391 21 QB

. 16 (k,14) 22.76 10.55 2.90 2.64 31 BAB
17 .(x,16) 34.98 3.77 8.10 0.94 2.9 BAB
18 (x,18) 48.95 1.92 15.90 0.48 2.7 BAB
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TABLE II. Cross Sections (a?) at E/kpg = 30 K from all bound states i=(v,j) into the quasi-

bound (0,10) resonant state treated as a scattering (s) or bound (b) state.

fei (000  (02) (04) (0,6) (0.8)  (1,0)

(1,2) (1,4)

(0,10)(s)«i 0.42 0.98 414 1698  48.29 0.19
(0,10)(b)«i 0.42 0.97 410 1683  47.85 0.19

0.43 1.02
0.43 1.02
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TABLE III. Cross Sections (ad) at E/kg = 30 K from states i=(v,j) into states f=(v,j’)

fe=i (0,0) (0,2) (0,4) (0,6) (0,8) (1,0) (1,2) (1.4) (1,6) (0,10) (0,12)
(00) 36008  19.07 4.59 78 12 89 15 01 .00 .02 00
(0,2) 9534 39897  34.93 8.52 1.49 .76 1.16 27 02 .23 04
(04) 4133 6287 39292  37.03 9.69 56 .66 1.08 19 1.76 24
(0,6) 1012 2214 5348 39107  38.30 .76 66 60 66 1042 1.78
(0,8) 1.97 508 1830 5009 389.93 A4 68 78 48 3874 1008
(1,0) 89 15 .06 .06 03 36071  15.16 5.51 1.34 01 .00
(1,2) 75 1.16 37 25 20  75.82 398.08  32.02 8.84 .10 .05
(1,4) 12 A48 1.08 42 41 4962  57.63  396.47|  27.00 44 36
(1,6) 06 .06 28 66 36 1738 2298  39.01| 402.05 61 112

(0,10) 42 97 410 1683 4785 19 43 1.02 98 38864  36.11
(0,12) 09 18 68 342 14.79 09 .26 1.01 215 4299  386.95
(,0) 62 .08 04 02 00 4.55 167 a7 1.13 .00 01
(%,2) 44 88 21 12 05 9.28 9.04 5.47 6.98 .02 .06
(x,4) 18 41 1.06 .30 22 6.49 9.00 1197 14.03 .10 13
(x,6) a8 .15 58 1.58 .58 756 1126  15.59 .00 .59 .55
(x,8) .10 11 a8 1.06 2.56 8.62 1437  28.72| 5431 1.62 3.73
(%,10) 04 07 a2 40 1.78 2.63 483 1249 2011 3.46 5.22
(%,12) .03 .05 a3 A1 1.59 78 1.40 4.05 13.40 4.37 .00
(x,14) 04 .06 19 a7 3.94 .29 .54 1.82 748 1724 = 4838
(x,16) 01 .02 .05 .16 75 10 19 67 3.53 421 19.06
(%,18) .00 .00 01 .02 08 03 06 26 1.70 .57 4.83
(x,20) 00 .00 .00 00 00 01 02 09 83 .03 74
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TABLE IV. Total cross sections (a2) for possible processes of a given type at E/kg = 30 K

from states i=(v,j).

fei (000 (0,2)  (04)  (0.6) (08 (L)  (1,2)  (14)
i 360.08 398.97 39292 391.07 389.93 360.71  398.08  396.47

bei 150.52 110.96 112.81 97.14 50.24 128.85 76.11 40.27

QB«i 57 121 506 2090  63.01  17.66  23.66  41.03
BAB«i 40 47 125 438 1120 2002 3267  63.69
3B«i 1.24 1.37 1.31 7.44 27 20.31 19.71 18.21
tot(sum)«—i 512.82 512.98 513.34 513.92 514.74 547.54 550.24 559.67
tot(com)—i  512.90 513.07 51348 514.24 51558  549.41  552.52  563.39
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FIGURES

FIG. 1. Effective potentials (in Kelvin) versus r (in atomic units) for ¥ Ne, with some bound
and continuum wavefunctions, plotted about their energies (¢), superimposed on them. The dotted
line marks the energy zero. (a) j = 2. The maximum amplitude of the resonant wavefunction is
at large r. (b) j = 6. The energy of the QB wavefunction is barely below the top of the barrier,
so that it is only a little localized. (c) The BAB resona.nt. wavefunction for § = 14. There is only

a little enhancement of the amplitude at small r. See text for discussion.

FIG. 2. 3D perspective plot of the Ne, scattering wavefunctions versus distance and energy

(€). See text for discussion.

FIG. 3. Collision lifetime (delay time) (in picoseconds) versus Energy e (in Kelvin) of the
continuum states of Ne; with j = 4. At this angular momentum there is a barrier slowing (BS)

resonance at low energy, and 7 is negative (nonresonant) at all higher energies.

FIG. 4. do/dk versus k (atomic .units). The integral of each curve gives its integral bound-free
cross section, so that this plot gives the contribution from a given energy of relative motion of
the Ne atoms. The symbols on the curves label the initial states, i=(v,j): solid circles, (0,0);
asteriskg, (0,2); solid squares, (0,4); solid triangles, (0,6); X, (0,8); open triangles, (1,0); Y, (1,2);
and diamonds, (1,4). (a) j; = 0. These contributions are all due to direct, nonresonant three-body
colﬁsions. (b) i = 4. These contributions are also from the direct, nonresonant 3B continuum.
(c) jy = 6. The sharp peaks are from the (1,6) QB state; the broad tail is from the nonresonant 3B
continuum. (d) jy = 8. This is mostly due to a BAB resonance. (e) j; = 12. The sharp peaks are
- from the (0,12) QB state. (f) jy = 14, (g) j; = 16, and (k) j; = 18 are all due to BAB resonances

and nonresonant 3B scattering. See text for discussion.

35




(Op) 4 edubysiq
0f¢ GZ 0Z SI 0oL ¢

____________________,_.__._.__

@)
I

O

(uialey)

o O
M N

-
D
AOYIN3

Figure 1(a)




J movcEm_o
Gl Ol

0s-
Z-Z
0Z-Z
AJ
G)
01-=
=
0 2
<.
>
oL >~

O
N

Figure 1(b)




(Op) 4 eoubisi(

Gz 0Z gl oL S
——d___~_____-d._ N | I | _ ] O

-

O
N

Figure 1(c)

I

l

(@)

m .
(UIAl®Y) ADYINT




10

20

€ K)

Figure 2

8.

40

65
13.8

18.

50




Figure 3




S.OlllllllllIlllllllllllll

40 A -
*
: 42

1.0

;

Figure 4(a)




do/di (ag®)

24.0

20.0

|Il|]llll‘llllllll.llll|

Figure 4(b)




600.0llllll]ll]llllllljllllll

- -

500.0 [~ E’ o
n y .

Figure 4(c)




120.0
100.0
80.0

60.0

do/di (ag®)

40.0

20.0

IIIIIIIII'I|l1l1]1I!IIIl

Figure 4(d)




500.0!11!Illllllll]ll1llllll

300.0 - =12

do/de (ag®)

Figure 4(e)




30-0I|1I]Illl—lill|llllllll
25.0 | -

do/dx (ag>)
o
o
l
|

10.0 — . —

Figure 4(f)




3.0

2.5

2.0

do/dk (ag”)

1.0

IITIIIIIIIIlIll|I||I|l|1I|1

—~ a—d
\
A
) ¢
— P S et
b ¢
=~
e —
b ¢
™
*
—
”
L
b ¢
L\
- -
-
L\
pr ——
) 4
K

0 05 1.0 15 20 25 3.0

K (00_1)

Figure 4(g)




1-0 L L I LR L ] LI

Figure 4(h)




