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ABSTRACT: Three topics are discussed, i) The nature of long wavelength

excitations in Hg3_$AsFg, where gapless excitations in addition to the

conventional acoustic modes are observed, ii) Thiourea, in which new

commensurate phases can be induced by an external electric field, iii)

Discommensurations in 2HTaSe2> where recent electron diffraction and high

resolution x-ray data combine with neutron results to establish a quite complex

and subtle behavior.



There have been many interesting studies of incommensurate systems in the

past few years, many of them involving either elastic and/or inelastic neutron

scattering. In a short review it would not be possible to summarize even a

substantial fraction of them in a meaningful way. Instead I have chosen three

topics that I have some familiarity with and for which neutrons have played a

key role in our present understanding.

I. Long wavelength excitations in incommensurate intergrowth compounds.

We define an incommensurate intergrowth compound as one composed of two (or

more) interpenetrating sublattices with incommensurate lattice spacings. The

incommensurability is of degree d (l<d<3) if the lattices are incommensurate

along d independent directions. If the intersublattice forces are short ranged

and if surfaces are neglected (periodic boundary conditions), for sufficiently

weak interactions and spacings sufficiently far away from commensurability the

total energy of the system is unchanged upon sliding one sublattice along an

incommensurate direction with respect to the other sublattice(s). As a result

there are 3+d gapless long wavelength excitations (Goldstone modes) in place of

the conventional three acoustic branches. Some of the expected features of

these excitations have been previously discussed. [1]

The most studied and consequently best understood d=l example is the linear

chain mercury compound Hg3_gAsFg, [2]-[4]. (See Fig. 1). Heilmann, et.al.,

[4], in the course of a more extensive investigation measured the dispersion of

some low frequency phonons emanating from the AsF6 sublattice Bragg peaks in

Hg3_gAsF5. They noted that whereas in conventional elastic media the sound

velocity, v(qla,e8c)=v(qlc,ela)

R(meas.) = vv;"';*7 - 1-25 (±.1) (1)
v(qlc;ela)

Axe and Bak [5] have considered the long wave lattice dynamics of

HS3-6AsF6 f r c m t n e viewpoint of continuum elastic theory. They define five

"slow" collective coordinates



u = l/2(uA+uY)
X X X

uy

w = uX

X X

w = u
y y

Here the superscript A denotes the AsFg sublattice, and the superscript X(Y)

denotes the Hg-chain sublattice oriented along the X(Y) axis. As in

conventional elastic theory the elastic energy, U, is expressed in terms of the

quadratic products of the spatial gradients of the slow coordinates. In

addition to the point group symmetry restrictions on the form of

UO^Ujj 3kwfc)> all the terms involving 3yjZwx and 3X)Z
wy vanish

above Tc=120K, at which temperature each Hg sublattice "melts", leaving a

collection of individual independent Id Hg chains, whose properties have been

measured [2]-[4], and discussed by Emery and Axe [6]. Thirteen non-equivalent

terms, each multiplied by a generalized elastic constants serve to describe U.

Not enough experimental data exist to fix all of the constants but the

velocities for propagation along the x- and z-axes for all five branches exist

[4]. When the elastic energy is fitted to these data, the behavior of the

variation of velocity with propagation direction is as shown in Fig. 2. For qla

there are two (mixed) longitudinal modes involving u x and w x. The high

velocity mode (large contribution from w x) predominantly propagates on the Hg

chains, while the low velocity mode involves mostly the AsFg sublattice. Of the

remaining three transverse modes, one, involving only the shear 3xWy has a
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vanishing velocity and is purely diffusive in character («o(q) inq , where n is

an appropriate viscosity). For qllc there is one longitudinal mode (uz), two

degenerate transverse modes (ux,uy) and two zero velocity Hg-shear modes

(wx,wy). One mode (wy) is in fact diffusive everywhere in the (x,z)

plane.

In spite of the large number of elastic constants necessary for a general

treatment, it is possible to discuss the failure of the conventional elastic

relation R=*l pointed out above in exact and simple terms. The two shear strains

under discussion are shown schematically in Tie. 3. The key point is that in

Fig. (3a) all displacements are along c, for which both Hg-sublattices and the

AsFg sublattice are coupled. The shearing of the Hg-sublattices do not

contribute to the elastic stiffness but do contribute to the inertial mass. By

contrast the a-axis displacements of the AsFp (Fig. 3b) couples only to one of

the Hg-sublattices, the x-axis array being free relative to displacements along

x. Consequently only one of the two Hg-sublattices participates in this mode.

Both modes have the same elastic stiffness, so it follows trivially that

A+2pn_ 1/2

- 1.27 (3)

where p^ and pjjg are respectively the mass density of the AsFg and the Hg-

sublattices. The agreement between observed and calculated R-values provides a

direct and striking demonstration of the ability of two incommensurate

sublattices to slide freely relative to one another. Further low frequency

acoustic and/or light scattering studies of the unusual low frequency long

wavelength modes of incommensurate intergrowth compounds should prove rewarding.



II. Thiourea

Thiourea is one of the first known examples of an insulator with a

commensurate-incommensurate phase transformations. [7] Above TO=218K (see

Fig. 1) it is non polar orthorhombic (space group Pnma) [8], Below TC=191K

[the values of T o and T c refer to the deuterated material] the n-glide is

lost essentially by virtue of a tilting of the planar thiourea molecules about

the b-axis, resulting in a ferroelectric with a-axis polarization. [9] Between

T o and Tc, sattelite reflections of the type (h,k+n6,£) reveal b-axis

modulation of the polarization (h,k,A,n=integers; 6=modulation wavevector).

[8] ,[10] Fig. 4 shows the P-T phase diagram as determined by a recent neutron

study by Denoyer, et.al. [11] At ambient pressure the 6=0 and 5=1/9

commensurate phases are stable in addition to an incommensurate phase

(.141>6(T)>.115). Increased pressure stabilizes two new 6=1/7 and 6=1/3 phases.

One point which immediately arises on inspection of Fig. 4 is the absence

of even order commensurate phases. Denoyer, et.al. [11] showed that this is a

simple consequence of symmetry. If Pg represents the amplitude of the

primary sinusoidally modulated polarization with wave vector qg, the lowest

order commensurate lock-in potential of order n in a Landau free-energy

expansion involves the n-th order anharmonic potential Vn(P$+P_5)

and translation symmetry demands that nq$=mb =G (a reciprocal lattice

vector). Denoyer, et.al. [11] showed that for thiourea point symmetry requires

that m and n be of the same parity. Thus for example 6=1/7 and 1/9 lock in

require seventh and ninth order anharmonic terms, whereas 6=1/8 involves the

much weaker 16"th order coupling and is not seen. However Denoyer

et.al.[11] were clever enough to realize that another way to stabilize 6=1/8



superstructure was through, for example, symmetry allowed terms of the form

where Po is the macroscopic polarization along the a-axis which can ba induced

through an electric field E through the q=0 susceptibility Xo* This raises

the possibility of an electric field induced 6=1/8 commensurate phase in

thiourea.

That this possibility is indeed realized was inferred in a dielectric

susceptibility study of Jamet, et.al., [12] and directly confirmed in an elastic

neutron study by Moudden, et.al.[13] Under the assumption that the polarization

near 6=1/8 lock in is phase modulated, i.e. that P(y) is given by

P(y) = Aexpi[-|b*y+<Ky)] (5)

the simplest Landau free energy which describes the basic features is of the

sine-Gordon type

VF - / dy{^«A2 + ±&Ah * - |e(7$-qo(T))2A2 + V£XEA8cos8*}. (6)

To lowest order in /£ a commensurate phase minimizes eqn. 6 over a range of

temperatures T_<T<T+ with T+ given by

T+ = Tg ± const. /E . (7)

Figure 5 shows the effect of an applied E field on the variation of 6(T) as

determined by the elastic neutron study.[13] The behavior of T+(E) is in

agreement with that deduced from the dielectric study [12] which is in turn in

agreement with eqn. 7 for IEI < 10 V/cm. These measurements represent the first

example of the control of the lock-in potential by an externally variable

field. Such systems should prove very valuable in future studies of

discreteness effects (e.g. devils staircases). These effects are expected to

become important for thiourea only for much higher fields.



III. Phase Transformations and Discommensurations in 2HTaSe?

Of the various quasi 2-d CDW systems, the 2H polytype of TaSe2 has been

most thoroughly investigated.[14] The system is very rich in the sense that

each increase in the resolution or sophistication of the probe has uncovered

more subtle behavior. Early electron diffraction studies showed sattelite

reflections appearing at T<TO=123K [14]. Initially these peaks were thought

to be commensurate, with reduced wave vector qc=a /3, but a subsequent

higher resolution neutron scattering study by Moncton, et.al., [15] showed

structure to be incommensurate near T o with wave vector q$=(l-S)a /3.

6, initially " .02, was shown to vary smoothly upon cooling until Tc=90K where

6 went rapidly to zero. Both the incommensurate and commensurate phases

exhibited hexagonal symmetry on a macroscopic scale. Moncton, et.al.[15] went

on to study the temperature dependent amplitude of the CDW and the dynamics of

the transformation as well as to discuss the mechanism for 6(T) and the ultimate

"lock in" transformation, 6(T)-K).

The next discovery came in a high resolution xray study by Fleming

et.al.[16], who found a new incommensurate CDW structure which could only be

obtained upon warming and which manifested itself through a splitting of the CDW

sattelites on a scale unresolved in the previous studies. This new phase was

stable on warming from T^g to Tgi=112K and displayed a clear lack of

hexagonal symmetry. (See Fig. 6). Unlike the commensurate and the fully

incommensurate states discussed above where the modulation is a

coherent superposition of identical components with wave vectors, (qj^q^jq^),

along each of the three trigonal symmetry axes, the new phase had three

coexisting nonequivalent wave vectors, one of which remained commensurate.

Whereas the fully incommensurate phase can be thought of as characterized by

commensurate regions separated by a hexagonal (honeycomb) pattern of domain



walls or discomraensurations (l!C's), the three nonequivalent wavevectors implied

a linear or striped arrangement of DC's. The relative stability of striped vs.

hexagonal domain patterns bad been previously discussed by Bak et.al. [17], and

rests (at T=0) on a competition between wall touching energy (nonexistent for a

stripe phase) and wall-wall repulsion (for the same density of parallel DC's,

they are further apart for the honeycomb). At finite temperatures there is a

greater entropy associated with the honeycomb. Thus below Tgg the fully

incommensurate phase is metastable and the transformation is discontinuous as

predicted theoretically.[17] The onset transformation at T o appears

continuous but is expected to be 1st order. The transformations [at TQJ (on

cooling) and Tgg (on warming)] appear continuous but only the latter is

predicted to be so.

The next round at revelations came from the direct imaging of domain

microstructure using superlattice dark field electron microscopy. [18,19] The

first surprise was that the commensurate phase although hexagonal on a

macroscopic scale consists of rather large (Mlym) domains having orthorhombic

symmetry. The explanation of the broken hexagonal symmetry is rather subtle.

If the distortions for a single TaSe2 layer are analyzed assuming the

superposition of three plane wave CDW's with amplitudes i|)j=aell')j( j=l ,3

associated with the equivalent wavevectors qj) three possible structures are

possible. [20], [21] (See Fig. 7). The different choices for <|>j are reflected

by a shifting of the position of the 3-fold axis within a single layer. In each

case the distorted layer retains hexagonal symmetry, but there are two layer per

unit cell and the resultant pattern can have lower symmetry. It is found that

3-d structures built from type-I layers is hexagonal but those built from

type-II and -III layers are orthorhombic.[20] Such an orthorhombic cell can be
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oriented in three different ways on a hexagonal lattice thus accounting for the

domains and it appears that only the type-II structure is compatible with NMR

[22] and Mossbauer [23] studies as well as the electron microscopy.

Beautiful confirmation of McMillan's [24] proposal of the importance of

D C s in the incommensurate phases is obtained by the electron microscope

studies. On warming above TQS alternate regions of dark and bright stripes

nucleate within each orthorhombic domain. (See Fig. 8) The average width, L,

of the stripes changes with temperature in agreement the xray diffraction

measurement of the incommensurability 6 (L=2ir/3<5). The dark and bright stripes

represent domains of differently oriented orthorhombic material and the

discommensurations (boundaries between the dark and bright stripes) are narrower

than instrumental resolution ( 50A). The stripes are observed often to

annihilate at a node (called a CDW dislocation) in which exactly six

discommensurations disappear. Several models have been proposed to account for

these observations.Perhaps the most appealing scheme is that proosed by Walker

and Jacobs [25] in which linear discommensurations in odd layers (DC_) lie

exactly halfway between those (DC+) in the even layers. The resulting 3d

pattern is of alternating stripes of orthorhombic phase with two different

orientations representing the light and dark stripes, respectively. The fact

that a CDW dislocation involves six D C s is related to the fact the CDW in each

layer undergoes a phase change of 2ir/3 at a DC and so changes by 2ir in a loop

enclosing the dislocation.

The direct imaging of the high temperaturt •'ncommensurate phase (cooling

below To or warming above Tsi) is more ambiguous, in part due to resolution

problems attendant with the fineness of the domain spacings at high

temperatures. [18],[19] The resulting patterns [l8] [l9] seem consistent with a

(double) the hexagon honeycomb array as partly anticipated by xray and neutron

diffraction studies and as predicted by theory [20] [21].



Returning finally to neutron and xray studies, McWhan et.al. [26],[27] have

investigated the effect of hydrostatic pressure on the CDW phases. The results

are shown in Fig* 9. Pressure destabilizes the commensurate phase and then,

surprisingly, restabilizes a (different?) commensurate phase. There are at yet

no measurements which differentiate the high and low pressure commensurate

phases, but there is some theoretical indication of the sort of added complexity

which may be expected. Littlewood and Rice [21] have considered a model in

which the energies of type I and type II single layer patterns are nearly

equal. As a result i) domain walls (DCs) separating two type II regions can

be "decorated" with an intervening type I region, thereby lowering its formation

energy; ii) the reduced energy of such a DC destabilizes the orthorhombic

commensurate phase. Finally, iii), pressure can increase interlayer

interaction, which further destabilizes the orthorhombic (type II) phase

relative to the hexagonal (type I) phase. The model produces a P-T phase

diagram in qualitative agreement with Fig. 9. Further structural measurements

will be necessary to test the model.
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Figure Captions.

1. The structure of

2. Variation of velocity of long wavelength gapless excitations in

Hg3_$AsF6. (Ref. 5). Symbols denote nature of mode in high symmetry

direction.

3. Quasi-degenerate shear modes In I^^AsFg. In case (a) both Hg

sublattices are tightly coupled to the shear of the AsFg sublattice. In

case (b) only one Hg sublattice is coupled.

A. Phase diagram of thiourea. (After Denoyer et. al. (Ref. 11)).

5. Incommensurability, 6(T), for thiourea. An applied E field causes lock-in

at 6=1/8. (After Moudden et. al (Ref. 13)).

6. Temperature dependence of incommensurability, 6, in 2H TaSe2« On cooling

only the fully incommensurate phase appears. On warming an additional

stripe phase is present between Tcg=93K and Tgj=112K.

7. Three possible commensurate phases resulting from different choices of phase

for the 3 CDW components in a single layer of 2HTaSe2- Atomic positions are

projected onto a single plane parallel to the layer. Solid lines represent

maxima of the CDW's. (After Walker and Jacobs (Ref. 20)).

8. Stripe images obtained by dark field electron microscopy in 2H TaSe2 at

T=97K. Chen et. al. (Ref. 19).

9. P-T phase diagram for 2H TaSe2« Closed circles are from neutron

scattering. Other symbols are from x-ray studies (Ref. 27).
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