ORNL/CP-97650

CONF-98///3 -~
A Multi-User, Interactive, Annotated Flow-Chart Applet'-?

S. E. Attenberger
Computational Physics and Engineering Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6418

+1 423 241 5929
sea@ornl.gov

Category of Submission: Paper
Primary Contact: S. E. Attenberger

1Resezzlrch sponsored by the National Aeronautics and Space Administration under
Interagency Agreement DOE No. 2013-F044-A1 under Lockheed Martin Energy Research Corp.,
contract DE-AC05-840R21400 with the U.S. Department of Energy.

“The submitted manuscript has been authorized by a
contractor of the U.S. Government under contract No.
DE-AC05-960R22464. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S.
Government purposes.”

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED - MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thercof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability. or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

A Multi-User, Interactive, Annotated Flow-Chart Applet
S. E. Attenberger
Oak Ridge National Laboratory, Oak Ridge, TN USA
+1 423 241 5929
sea@ornl.gov

ABSTRACT

This paper describes a web-based documentation tool that
has been developed for use by a team of collaborators who
are developing interacting components within a system. It
consists of a Java applet in the form of a flow chart with
additional text that can be viewed by clicking on the desired
component. The text, positions, and linkages of the
components may be edited by the user and saved to the
server. The concept could easily be applied to other
collaborative work. Using the techniques and code segments
described here, a programmer should be able to customize a
similar applet for his own use in a few days time,

Keywords
Java, perl, applet, flow chart, annotate, multi-user

INTRODUCTION

This paper describes a documentation tool recently
developed by the Oak Ridge National Laboratory (ORNL)
Distri Active Archive Center (DAAC), a NASA-funded
institution” for archiving biogeochemical dynamics data.
The DAAC accepts data from principal investigators and
distributes it to modelers and to the general public all over
the world. The data are accessed through a constantly
evolving complex of hardware and software that is
maintained by the collaborative effort of a team of systems
personnel.

The initial problem was to communicate the existing system
configuration to some new collaborators. A static (Visio)
flow chart document was used at first, but as various
collaborators. contributed to the document it became
inadequate to display all of the relevant information.
Furthermore the system configuration continued to evolve as
the document was developed, and the document was
perpetually outdated. There was a clear need for a
documentation tool that could be modified easily by
whichever collaborator changed a part of the configuration.
To meet this need, a Java applet was developed that permits
systems personnel to document modifications by using a

shared online document. The software aims to provide a
comprehensible overview of all the major components, with
additional information available by clicking on components
of interest.

We begin with an example of a typical configuration diagram.
Then we show how to use the applet to construct a
configuration diagram. Next we describe the essential
features of the implementation, including segments of Perl
and Java code.. Finally we discuss future directions and
plans.

EXAMPLE: A TYPICAL CONFIGURATION DIAGRAM

Fig. 1 shows an overview of the DAAC system configuration
that has been simplified for this presentation. In actual use
the screen would contain names of directories, files, and
database tables. The URLS labeled “Public” are real and the
general public is encouraged to view our web site, however
this applet runs on an internal server that is not available to
the general public.

The core of the configuration is the actual data, which is
stored primarily as files on spinning disks. A Sybase
database stores metadata which describes the data using
standard keywords. Multiple local and remote search engines
present this metadata to the user to help him or her find
relevant data.

The search engines are represented here as the peripheral
boxes in the diagram. For simplicity we have lumped the
search engines together with the corresponding URLs and
servers. There are actually 8 DAACs in the U.S., and each of
them have a VO search engine that can search the VO servers
of all 8 sites, although only 2 of them are shown in this
diagram. The VO system allows the user to arrange for data
delivery via ftp and other means. Most users prefer the

1. Research sponsored by the National Aeronautics and
Space Administration under Interagency Agreement DOE
No. 2013-F044-Al under Lockheed Martin Energy Research
Corp., contract DE-AC05-840R21400 with the U.S.
Department of Energy.

2. Version 0 of the Information Management System (IMS)
of the Earth Observing System Data Information System (EOSDIS)

CD or ftp delivery of selected data. Searches are available by
geoqraphic teqion, by proiect, by tvpe of sensor, and by

http: //www-eosdis. oml.gov:8099/~imswww/publimswelcome/
{Public) V0 Search Engine at ORNL :

| http://daaclesd omi.gov/welcome. htmi
4 (Public) BIOME Search and Order Engine

V0 Server at ORNL
Searches Sybase for metadata

http: / /harp.gsfc.nasa.gov/~imswww/pub/imswelcome/

{ Metadata storage

{Public) V0 Search Engine at Goddard Space Flight Center

SYBASE DISK
Data storage

http://daacs.esd.oml.gov/welcome.html |-
{Development) BIOME Search and Order Engine

Fig. 1 A Typical Configuration Diagram

BIOME search engine even though it does not connect to the
other DAACS because it gives the user the option to view the
data immediately in their browser.

In the figure the “http://daacl.esd.omnl.gov/welcome. html”
box has been selected by clicking on it, which causes the
Java text boxes at the top of the applet to display the
corresponding fields for title, description, and “Additional
Info”. Although it doesn’t show in this black and white
reproduction, the color of the box changes upon selection.
The text in any of the three text boxes may be edited.

The lines joining the boxes are called “links™ (not to be
confused with hyperlinks) and they indicate flow of
information. Usually the flow is bidirectional so no

arrowhead option has been implemented in this version.
CONSTRUCTING A CONFIGURATION DIAGRAM

Fig.2 shows an early stage in the construction of the
previously described configuration. To add a box
representing a Node object, one clicks the “Add Box” button.
A box appears labeled “New Box”, with empty Description
and Additional Info fields. The fields can be edited
immediately or later, by clicking on the desired box to select
it. As the user fills the text boxes, the change appears
simultaneously in the figure. In the present version links are
added by clicking 2 boxes and then clicking “Add Link”, but
in the future a more intuitive rubber band approach will be
used..

}cﬁDMC {ayout - Netscape

'File Edt View Go. Communicator: Help

Labet [VOSevera OHNL

DAACL Conﬁguratlon 3/15/1998

Ophonal Descnphon: ,

|»

-IS earches Sybase for met...

: Thls mformatmn is hldden until you click on the conespondmg box.
it Aunkke the Description which appears under the label. There can be
any number of lines of additional info in this scrollinabox. .

: http:!!www eosdis ongwBOSS/“'lmswww/pubflmsweicome/

V0 Server at ORNL
Searches Sybase for met... | -

acdBo| Dowotion | Adaiik |

Public V0 Search Engme at OHNL

DeletoLink | Pl Sloton | 5o

& " [Applet Giaph running

Fig. 2 Using the applet to construct a configuration diagram.

We have experimented with an algorithm to let the applet
choose optimal placement of the boxes (using the “Relax
Selection” button), but to date this has not been very
successful. We have some ideas for improvements that
will be discussed in the “Future Directions and Plans”
section. The user may at any point click on “Save All” in
order to save the modified configuration in disk files on
the server.

IMPLEMENTATION
The application uses HTML, peri, and Java files that

HTML. File for Initial Entrv

<html><header>
<title> DAAC Layout </t1tle>

reside on a unix server. The initial invocation is to an
HTML file with an embedded Server-Side Include that
merely calls a perl script. The perl (CGI) script writes the
HTML dynamically to the browser, the applet being
invoked within the HTML. Thereafter, the perl script gets
called directly by the applet when the user clicks on “Save
AlI”, with all information about the configuration being
passed in a query string. The HTML file is used only
because the applet sits in the HTML disk area rather than
the CGI disk area. This causes Java to look for the applet
in the proper place.

</header> <body>

<!--fexec cgl““/cglrootdlrectory/confng p"-->
</body> </html>

Segments of CGI script “config2.p”

require "cgi-lib.pl";
&ReadParse (*input) ;
$1linkString =$input{'linkString'};
S$nodeString=$input{'nodeString'};

#sSave the configuration to disk if it has been initialized
if ($linkString ne "") {
open {LINKS, ">$LinksFile") ;print LINKS "$linkString";
close LINKS;
}

if ($nodeString ne "") |
open (NODES, ">$NodesFile") ;print NODES "$nodeString”;
close NODES:;

}

print "Content-type: text/html\n\n";
#On the first pass we must write the html containing the applet.
#On later passes, it does no harm...
print <<"EOQOF".
<html><header>
<title> DAAC Layout </title>
</header>
<BODY bgcolor="#FFFFFF">
<center><H3>DAACL Configuration</H3></center>

<applet codebase="http://developmentarea/" code="Graph.class" width=600 height=400>
<param name=links value="
EOF

.
r

open (LINKS, "$L1nksFlle“), while (<LINKS>) {print;}
close LINKS;

print <<"EOF"
ll>
<param name=fixed value="
EOF

open (NODES, "SNodesFile"); while (<NODES>) {print;}
close NODES;

print <<"EOF”
l'> .
</applet></body> </html> -
EOF

.
r

Segments of the Applet

public class Graph extends Applet {

boolean saveAll() {

= String URLstr = RootDir +“/config2. p’nodestrlng—"

Dimension d = size();
//Format for nodes.dat

//index|xclycllabel|ldescription|hiddenText|

Enumeration eNode
while (eNode.hasMoreElements())

= panel.nodes.elements();

Node n = (Node)eNode.nextElement(};

URLstr = URLstr + n.index +"|";

int xp = (int) (Math.round(100 * {(n.xc / d.width))):;
int yp = {int) (Math.round(100 * (n.yc / d.height))};
URLstr = URLstr + xp + "|" + yp + "|";

URLstr = URLstr + noSpace(n.lbl} + "|";

URLstr = URLstr + noSpace(n.descr) + "|";

URLstr = URLstr + noSpace(n.hiddenText) + "|";

}

URLstr = URLstr+"&linkString=";
Enumeration eLink =
while (elink.hasMoreElements())

panel.links.elements();

Link el = (Link)eLink.nextElement():

URLstr
URLstr
}
URL theURL = null;
try { theURL = new URL(URLstr);}
catch (MalformedURLException ex) ({
System.out.println("Bad URL:
return false;

}

return true;
} //saveAll()

FUTURE DIRECTIONS AND PLANS

The complexity of the DAAC configuration is a challenge to
represent graphically, and we continue to search for ways to
clarify and condense the representation. It is helpful that we
typically view the applet on very large screens, allowing
much more detail than is shown in Fig.l. In the time
between this writing and the 1998 CSCW meeting, there
should be much experience gained in using the applet and
many features will be added or improved. ,

In the immediate future we plan to lock the configuration
data files when someone checks them out for modification.
This will avoid interference between simultancous
modifications by different users. It would be natural to

combine this with a log of modifications, including dates
and user Ids.

URLstr + el.from.index + ">";
URLstr + el.to.index + "|";

" + theURL);

getAppletContext () .showDocument (theURL) ;

It would be nice to be able to input an arbitrarily linked
complex of nodes and have the applet automatically arrange
them in an optimal order. We have attempted variations that
mimic molecular dynamics, but so far we always revert to
positioning everything by hand. We believe that it may help
to separate those nodes that have many links and to have
simply linked boxes tend to migrate toward the edges. At
present the links pass under each other and under boxes,
which is not very satisfactory. Also the links always originate
and end at box centers, which is unnecessarily restrictive. An
algorithm to reduce the line crossings by using random
perturbations and/or Jacobean techniques, is probably needed.
After the configuration is optimized. we might attempt a
Visio-like linkage where the links bend around the boxes.

We expect that the applet, which is already useful in its initial
version, will become even more useful and user-friendly as we
continue to enhance it.

