
LA--10020-MS

DE84 013 858

Toroidal Equilibrium in an
Iron-Core Reversed Field Pinch

Guthrie Miller

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Los Alamos National Laboratory
Los Alamos,New Mexico 87545



TOROIDAL EQUILIBRIUM IN AN IRON-CORE REVERSED FIELD PINCH

by

Guthrie Miller

ABSTRACT

An analytic theory of toroidal equilibrium in the ZT-40M
reversed field pinch is obtained, including effects of iron
cores and resistive shell. The iron cores alter the form of
the equilibrium condition and cause the equilibrium to be
unstable on the shell resistive time scale.

I. INTRODUCTION

In this report an analytic theory of toroidal equilibrium in the ZT-40M

reversed field pinch is obtained. The primary object of this work is to

elucidate the roles of iron cores and imperfectly conducting shell in ZT—40M,

as these important experimental variables have not up to now been considered

in reversed-field-pinch equilibrium calculations. ' Specific reasons for

performing these investigations are the following: 1) For long time scale

experiments, the vertical field required for equilibrium needs to be supplied

by external windings rather than by the shell. To design a vertical field

control system, an equation of motion of the vertical field is required. Such

an equation is supplied here. The proper objective of the control system will

only be clear after experimental studies, but it is argued here that the

objective should be the elimination of̂  the shell equilibrium current, which

causes error fields. This objective can be accomplished and is not limited by

shell time constant. 2) The positional stability of the equilibrium in ZT-40M

has not up to now been examined. It is found here that the iron cores

destabilize both horizontal and vertical motions on a shell resistive time

scale. The air-core st bilization technique of field indexing (elliptical

shaping of the plasma) is useless in such a situation and feedback

stabilization is necessary. 3) The in-out asymmetry of the iron in ZT-40M,



where a larger fraction of space is occupied by iron at small rather large

major radius, has been proposed as a perturbing influence on the equilibrium.

This effect is quantitatively calculated here. 4) The experimental

measurement of the shell resistive time constant in ZT-40M, by observing the

penetration of vertical field, cannot be interpreted properly unless the

important effect of the iron cores is taken into account.

Following the well-known work of Shafranov, an aspect-ratio expansion is

used. This method is particularly appropriate for reversed field pinches,

which tend to have large aspect ratios. The theory has been derived from a

somewhat different starting point than the usual. In particular, the main

toroidal constraint, a condition that the body force per unit length acting on

the plasma be zero, is derived using an elementary Maxwell stress argument.

This perhaps clarifies the physical meaning of the well-known Shafranov

formula. The internal structure of the equilibrium is obtained by

straightforward aspect-ratio expansion of the equilibrium equations. An

interesting side issue comes to light from numerical studies of the internal

structure of reversed-field-pinch equilibria, namely, that plasma pressure has

very little effect on the plasma shift, as long as natural magnetic field

variables are held fixed.

The principal object of study here, the iron core and shell problem,

requires the calculation of external magnetic fields including shell, external

windings, and iron cores. This is a complicated task, and, for reasons of

space, only a general description of the method is possible. Final results

are given for the specific geometrical configuration of ZT-40M.

II. METHOD

The curved cylindrical coordinate system r, 6, z is illustrated in

Fig. 1. It is convenient to also refer to the following coordinate systems

related to r, 0, z: the cylindrical system R, <j>, Z, with

R = R0 - r cos6

Z = r sine



• = z/R0 ; (1)

the Cartesian system X, Y, Z, with

X = R cos<f>

Y = R sin<|> ; ( 2 )

or the curved Cartesian system x, y, z., with

x = r cos6

y = r sinG . (3)

The solution of the equilibrium problem will be obtained by first—order

expansion in r/RQ. The zero-order, cylindrical, plasma equilibrium is

specified by two profiles, given beforehand, that we take to be the parallel

current a = j«B/B and the pressure p. The zero-order fields are found by

solving the equations

ig = 0B2 —- p
r B 2

Bz

K = ~ °B0 - — p'
B2

with the boundary conditon B Q •»• orBz/2 as r •*• 0, where ' denotes the

derivative with respect to r. To first order in r/RQ, the magnetic field is

changed by having additional small terms ~ r/Rf)- These terms are given in the

Appendix. The toroidal effect of main importance here, however, is a boundary

condition that expresses the fact that the net force per unit length on the

plasma is zero. The net force acting on the plasma depends on magnetic fields



produced by windings external to the plasma, so we shall need a method for

calculating the external magnetic field.

The net force per unit length can be derived by the following elementary

argument. Consider the stress acting across the curved cylindrical surface 1

and end plane 2 shown in Fig. 2. The force acting in the X direction is

FX = / O B - Vp)-X dV

* 2
= / B«X B«dS - (p + -L.) X«dS , (5)

with the surface elements given by

dSx = (1 - JL cose) a dfl dz r

dS? = r dr d6 z , (6)

and

X = (- rcos6 + 8sin8) cos<(> - z sincf>

Subst i tut ing Eq. (6) into Eq. (5) , we obtain

FX 1 = / [ ( " Brcos6 + Besin6)c.os<j> - Bzsin<t>] Br (1 - ^- cos6) a d6 dz

B2

+ / (p + __) cos6 cos<J> (1 - —- cose) a d6 dz ,
I RQ

and



FX,2 = / [ ( " Brcos6 + Besin6)cos<Ji - Bzsin<f>JBz r dr d6

^-)sin<J> r dr d6

By taking the <j> derivative at <|> = 0 the net fcrce per unit length is obtained:

d FX , a.
-j-- = /(- B cos6 + Besin6) B (1 - — cosG) a de
dz RQ

• B2 a
_, ?— (1 - — cos6) cose a de

2 RQ

+/(- B2 + p + JL) J_ dr de . (7)
1 Ro

Equation (7) is an exact result for any aspect ratio, assuming only that p = 0

for r = a.

We now introduce an aspect-ratio expansion as follows (assuming a

circular cross section as in ZT-40M):

Br = Brl( r) s i n 6 + •••

Be = Be0(r) + Bei(r)cos6 + ...

Bz = Bz0(r> + Bzl(r)cos6 + ... (8)

where the subscripts denote the order of the quantity in r/Rg. Substituting

Eq. (8) into Eq. (7), we obtain to first and leading order



B -I. U D _1_ "O "Q \

L e " f j ae°Qi + BzBzi-'

+ j /(p + ̂ - - B2) rdrd0 , (9)

where the subscript 0 has been dropped. The final, well-known, result is

obtained by eliminating B z and Bzj from Eq. (9), using the zero-order relation

(p+B2/2-Bz)r = (2p+Bg/?.)r - [(p+B
2/2)r2]'/2 and the first-order vacuum field

relation Bzl = aBz/!<Q:

2

dz r R R 2 v&2

The force in the Y-direction can be obtained trivially by rotating in 8 and

taking RQ •*• °°. We will rewrite Eq. (10) in terms of the asymmetry parameter A

defined by Shafranov as follows:

dFx I2 ,

k iU)] , (ID

where Ip = 2iTaBQ is the plasma current and

La

A = ~

a ?
f Bf r dr

e r at ,

and



/ p r dr
a 2B Q(a)

2 0

Numerical studies using experimentally reasonable reversed-field-pinch

equilibrium profiles show that LQ is not independent of 3e when Bg(a), Bz(a),

and toroidal flux are held fixed. In fact, LQ/2 + gg is found to be almost

entirely independent of 3e for £e < 0.2. Figure 3 illustrates this point for

a 0 profile of the form

a(r) = aQ , 0 < r < r1

o(r) = ao(rp-r)/(rp-r1) , rx < r < rp

and pressure profile

B 2

p(r) = f ^ ( a 0 r p )
4 [1 - (r/rp)

4]

where r is the plasma radius and BQ is the on-axis magnetic field. The

pressure is written in this way to show the fraction f of the Suydam limiting

pressure on axis. Field profiles calculated using the formulae given in the

Appendix are shown for zero pressure and f = 0.2 . More familiar

dimensionless pressure parameters corresponding to f = 0.2 are the following:

(plasma energy)/(magnetic field energy) = 0.1 , 2) 3e = 0.14, 3) local 0 on

axis = 0.047 , and 4) p(0)/Be(rp)
2 = 0.11 . For the equilibria shown in

Fig. 3, the plasma radius is assumed to be limited by contact with the liner

(liner inside radius = 19.6 cm), and the shell is assumed to be a flux surface

[it is found that (shell radius)/(plasma radius) = 1.22]. The value of A (at

the shell) changes very little, from A = - 0.068 to A = - 0.065, as 36 is



increased from 0 to 0.14 . For this change of Bo, the on-axis shift changes

from 5(0) = 0.086 rp to £(0) = 0.085 rpS actually decreasing slightly.

The quantity Brj + Bg^ in Eq. (11) is determined by solving the external

magnetic field problem, using boundary conditions to match solutions for

various radial regions outside of the plasma. Vacuum magnetic field solutions

in r, 6, z coordinates are obtained as follows. The solutions of interest

have no dependence on z, and for such functions

9A. * 3An 3A7

3A . , 3 , 3A
- - 6 + [_ —- CrA *> - — —1

3r Lr 9r ^ 6J r 36 J
r - 6 + [_ —- CrA > —

36 3r Lr 9r ^ 6J r 36

_5. (cosG 6 + sine r) . (12)
R

A gauge can be chosen for which Ar = 0. As Bz = 0 outside of the plasma, Ag ~

1/r. From BQQ = I/(27rr), where I is the net toroidal current, A Z Q = -

[I/(2TT)] log(r). The first-order correction kzl satisfies [from Vx(VxA) = 0]

The solutions of Eq. (13) are Azl = [ - Cr - D/r - I/(4TTR) r Iog(r)]cos6, or,

in terms of magnetic field,

^ l ( ) + C + ^ s i n e

- —z )cos6 , (14)



where C and D are arbitrary constants to be determined by boundary conditions.

It is not permissible to take r -> « in Eq. (14), as this violates the

basic ordering assumption r « RQ. Far away from the plasma, the solution is

determined by asymptotic matching to the field far from a current loop. The

solution is of the form given by Eq. (14), but with a particular choice of the

constant C,

with only one arbitrary constant in this case.

III. CHARACTERIZATION OF IRON CORES AND SHELL

Figure 4 shows the positioning of the iron cores in ZT-40M. The iron is

modeled assuming constant permeability p (B = yH), with \i a large number (~

2000). The effect of the iron cores on the axisymmetric equilibrium fields is

taken into account by assuming an annular region filled with material of

permeability |j, where u is the axisymmetric average of the actual

permeability,

u(x,y) = / y(x,y,z) —L. , (16)

or

y - fp + 1 - f , (17)

where f is the fraction of a toroidal circumference (2TTR) occupied by iron.



Figure 5 shows plots of f(x,y) for ZT-40M, together with the simple

analytic fit that will be used in this report,

f s 0.39 -£ s 0.39 (1 + r ^Os6) , (18)
R RQ

implying the following functional form for y;

- . r COS0 /-,n\

V = VQ + Vi — = • (19)
K0

Thus we approximate the discrete iron cores as a continuous annulus of

magnetic material with higher permeability on the inside than outside in major

radius.

The permeability \i given by Eq. (19) does not alter the form of the

solution for the magnetic field. From Vx[(VxA)/p] = 0, we obtain instead of

Eq. (13),

1 9 f
 9Azl, 1 3 2 I cosS
^ 3 A

i ( H cose
2TIR U p 0

; r

which differs from Eq. (13) by the substitution I -* I(1+VIJ/IJQ).

The shell in ZT-40M is 2.2-cm-thick. aluminum alloy (with a nominal

resistivity of 4.2 iafi»cm) broken by toroidal and poloidal gaps. The shell

affects the plasma equilibrium by carrying dipole currents (flowing on

opposite directions on the small and large major radius sides of the torus).

We make two simplifying assumptions: 1) that the shell current is uniform

across the thickness of the shell, and 2) that the effects of the gaps can be

10



ignored. In reality, the finite width of the shell causes a delay in

penetration of vertical field, and the poloidal gap causes raplfd initial

penetration of vertical field. The two effects seem to approximately cancel.

These assumptions were tested by observing the behavior of the shell when

the vertical field windings were driven. The geometry is illustrated in

Fig. 6. For the case where only the vertical field winding is excited, the

vertical flux inside the shell is found to satisfy the equation

< 2 0 )

where A and n are the thickness and resistivity of the shell and Ij is the

cos6 Fourier component of the vertical field winding current, that is,

—

where 1^ is the current of the i wire located at angle 8j_.

Figure 7 shows xi(t)=:-2TrR(a/b)[H-(b/c) ]I^(t) and x(t) measured with

toriodal flux loops compared with x(t) obtained by solving Eq. (20). The good

agreement in Fig. 7 validates to a certain extent the simplified models of

both the shell and iron cores. Note that the iron cores have an important

quantitative influence on the vertical field through the factor 1 + (b/c) =

1.68.

IV. RESULTS

The equilibrium relation is obtained by equating to zero the force per

unit length given by Eq. (11). To determine Bri(a)+BQi(a), we ..ust solve for

the external field by piecing together, using boundary conditions, solutions

of the form given by Eqs. (14) and (15) in the five regions r < a, a < b,

b < c, c < d, and d < r, as shown in Fig. 8. The quantity Br^(a)+Bgi(a) is

obtained from the expression for the field inside the shell,

11



„ 2- Ca4*

(21)

where I p is the plasma current and £ is the outward shift of the flux surface

at r = a (see Fig. 8). Note that Br(a) = 1 £/(2rca
2) sin6 and the vertical

flux is given by x = 2irRa/5Br(a)sin8d6 = 2RI £/a. The time derivative of x i s

equal to the voltage ohmically developed by shell currents$ that is,

IF= " TT

where Ij a is the cos6 Fourier component of the shell current.

A laborious algebraic calculation for the special case UQ •*• m determines

C in Eq. (21) and gives the following result:

[Brl(a)+B61(a)]

-) l £ -
c2 d2

12



where I is the current in the toroidal windings, and 1^ and Ij a are the cos6

Fourier components of the toroidal winding current and the shell current.

Substituting for Ij a in terms of dx/dt using Eq. (22), the equilibrium

relation can be written as

aIp[A(l + J,

2

-) (24)

which is our final result. For convenience, quantities appearing in Eq. (24)

will be redefined here: x is t^e vertical flux through the shell; A and TI are

the thickness and resistivity of the hell; a, b, c, d, and R are geometrical

quantities shown in Fig. 8; Ip and I are the toroidal currents in the plasma

and toroidal windings; UQ and ui represent the permeability of the iron and

are defined by Eq. (19); A is defined by Eq. (11); and Ij is the cos6 Fourier

component or the current in the vertical field winding defined by Eq. (20).

Nominal values'-of the parameters for ZT-40M are given in Table I (p. 17).

The result given by Eq. (23) was checked by numerically solving the

linear system of boundary-condition equations. This numerical solution also

allowed checks with th^ air-core result

IT ( 2 5 )

in the two limiting cases 1) MQ * *» ^1 * 0» a n d 2) c .+_ d. Note that

Eq. (23), which is for the case p + °°, is not correct- in the c -»• d limit. The

13



/
limit c, d -*-/00 cannot be used for checks since this is not a physical case,

because of .the toroidal nature of the problem.

Another check of Eq. (24) is the case with no toroidal current windings,

so that t - Ij = 0. In this case the equilibrium position with no shell

currenti(dx/dt = 0) is shifted inward an amount £ = ax/(2RIp) given by

r

f ?
j
I

This result agrees with Eq. (78) of Ref. 4, except for the UI/VQ term, which

should be zero for the comparison. Note that the iron asymmetry given by the

/ ^l/^O t e r m increases the inward shift as one would expect [behaving similarly
i

/ to the lcg(d/c) term].

The flux equation in the air-core case that corresponds to Eq. (24) is

given by

+aIp[A + log|]

(26)
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V. DISCUSSION

The preceding calculations depend on several approximations that are not

necessarily extremely accurate. The large aspect-ratio approximation,

although valid in the plasma region, probably tends to break down in the

region of the iron cores and outside. The characterization of a ferromagnetic

material by a constant p is questionable, but, as the actual value of \x drops

out of the result for high p, the aproximation would seem to be justified in

this case. Spatial constancy of p within the iron is also assumed, which

would not be true near saturation as the iron preferentiaxly saturates on the

inside. Finally, the p characterization of the discrete iron cores is no more

than r simple, physically reasonable ansatz. It is expected, nevertheless,

that the qualitative features of the problem are described correctly.

The vertical field necessary for plasma equilibrium can be supplied in

two ways, as shown in Eqs. (24) and (26), directly by the vertical field

windings (the Ij term) or by the shell (the dx/dt term). ' The required

vertical field depends on the plasma current Ip, the toroidal winding current

I, and the plasma through the A term. The volt-seconds driving the discharge

are given by

/Vzdt = p 0 R (Ip+I)log| (27)

for the iron-core case and

/Vzdt = (Ip+I) R (log— -2) + Ip R log- (28)

in the air-core case, so Ip+I would be smaller for iron core than for

air core. This is the practical advantage of the iron cores, that the

discharge can be driven with a smaller current I. The observed volt-seconds

in ZT-40M identify p0 in Eq. (27) to be about 1000.

15



The important qualitative difference between the iron-core and air-core

cases is the x term in Eq. (24), which implies that the iron-core equilibrium

is unstable. Without a shell (ri •*• «•) this instability is rapid and would

occur on an Alfven time scale. The air-core equilibrium is neutrally stable

for small displacements from Eq.. (26); however, it is fairly easily shown that

for large displacements (a « £, < R Q ) , the equilibrium is stabilized by

toroidal effects (a physical analogy is a current-carrying wire in a uniform

vertical field). The nonuniformity of jj caused by a greater concentration of

iron on the inside of the torus results in an inward bias of the equilibrium

[the Vi/vQ term in Eq. (24)] related to the basic cause of the instability,

which is the attraction between the plasma and the iron. The iron-core

instability is the same for vertical or horizontal plasma shifts, so field

indexing does not make sense in the iron-core case.

To minimize error fields, the shell equilibrium current should be made as

small as possible= This is mainly because of the poloidal gap, which severely

perturbs the shell current. Also, nonuniformity of the shell (in ZT—40M the

shell consists of bolted-together segmpnts) or openings in the shell would

create error fields with a shell current. Zero shell current is obtained by

adjustment of Ij to give dx/<2t = 0 in Eq. (24) or (26). In the iron-core

case, because of the instability, a feedback system controlling Ij is

required, but in the air-core case, a programmed adjustment would be

sufficient. Although from the error field standpoint, the objective of the

vertical field control system is the elimination of shell equilibrium

currents, other objectives, such as "proper" positioning of the plasma flux

surfaces, can be stated. Experiments are needed to decide which objective is

of greatest importance.
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TABLE I

PARAMETER VALUES FOR ZT-40M

RQ = 114.3 cm

a = 23.1 cm, A = 2.2 cm, neff = 9.6 yfi-cm

b = 28 cm

c = 34 cm

} H = 1000(1

d = 60 cm
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Fig. 1. Coordinate systems. The principal coordinate system used

is the toroidally curved cylindrical system r, 6, z.

Fig. 2. Volume for which the net force acting on the plasma is calculated.

18
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>. 3. Calculated equilibria for B6 = 0 (solid curves) and £e = 0.14 (dashed

curves). The upper part of the figure shows By and B 2 at y = 0 as a

function of x. The plasma shift and the BQ asymmetry at the shell, A,

are nearly independent of plasma pressure.

19



r

Fig. 4. Placement of iron cores in ZT-40M.
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Fig. 5. Fraction of toroidal circumference occupied by iron.
The coordinate x is defined in Fig. 4, and y is a
vertical coordinate.
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Fig. 6. Vertical field system on ZT-40M.
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Fig. 7. Observed penetration of vertical field through
the ZT-40M shell .
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Fig. 3. Definitions of geometrical quantities,
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APPENDIX - INTERNAL STRUCTURE OF THE EQUILIBRIUM

For completeness, the formulae for the toroidal corrections to the

internal equilibrium quantities are given here. The magnetic field, parallel

current, and pressure are represented as follows:

Br = Brl(r)sinC

Be = Be0(r) + B6i(r)cos6

Bz = Bz0(r) + Bzl(r)cos6

a = oQ(r) + a1(r)cos6

P = Po(r> + Pi(r)cos6 . (A-l)

There are thus five unknown functions of r: \\t Bgj, Bzi, aj, and p^ to be

determined from the five equilibrium equations, which are

V«B = 0

B«Vp = 0

VxB = aB + BxVp/B2 . (A-2)

The -substitution of Eqs. (A-l) into Eqs. (A-2), including the toroidal

corrections to the operator V, is straightforward but laborious. The natural

variable is the (outward) displacement £ = rBrj/Beo» which allows the

resulting differential equations to be integrated. The solution is as

follows:

Brl



rB6
B61 = ( B ) ' +

Bzl = - arBrl - — PI
Bz rBz

+

a,

rBrlp'

rBrlo' 2p/Bz

e B B 6

[PI + BzlBz +(Bei+Bri)B6] , (A-3)

where the subscript 0 has been dropped. The displacement £ is given by

r drl rx 2
— J — [J (BQ—2r2p')r£dr2 + Cj , (A—4)

0 RrjBg

where C is constant. When r = 0 is the magnetic axis of the zero-order

equilibrium field, C must be zero in order to have £'(0) finite. The

expression for Bgj(a), where a is outside the plasma, gives the following when

Eq. (A-4) is substituted for £:

k (A-5)

which also implies that C = 0, by comparing with Eq. (11).

A special case of Eq. (A-4) is a vacuum region extending from radius rp

to radius a. In this case

a2r, „ <
) = - 2R [(A(rp)+l/2)(l - -J) + log(a/rp)J . (A-6)
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