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Abstract

We survey the production of electron, muon and tauon pairs in collisions between ni

at ultra-relativistic energies. Such studies enhance our understanding of the role of

vacuum in field theory, and provide essential input for several experimental programs

variety of models for the nuclear and nucleon form factors have been considered, revea

some degree of sensitivity to assumptions about sub-nuclear structure. We predict that

cross sections, even at high invariant masses and transverse momenta, are large on hadr

scales, and should act as useful probes of nuclear and nucleon form factors.



1. Introduction

The production of lepton pairs by purely electromagnetic means, in the intense short-

lived fields produced by the collisions of highly stripped heavy ions, has been a subject of

intense interest for almost two decades. Remarkably, interest is still growing, particularly

in ultra-high collision energies, well above one Gev per nucleon [1,2,3,4]. Our earlier work,

mostly at lower energies, was surveyed in a recent article [5].

These processes are of fundamental interest as an uncluttered test bench for the so called

gauge theories of particle interactions. While we believe that such theories describe most

of the physical world, we cannot calculate them except in perturbative limits, or using the

immensely complicated lattice gauge techniques, which are still in their infancy. However,

the strong fields in heavy ion collisions can be treated classically, offering the possibility of

a breakthrough into non-perturbative regimes with less effort.

Leptonic pair production also impinges on current and proposed experimental programs.

In the Relativistic Heavy Ion Collider (RHIC) facility to be constructed at Brookhaven,

the lifetime of the merged beams is limited by capture following pair production. It is

therefore desirable to have a theory, calibrated by at least one experiment, in advance of

completing RHIC. Ambitious efforts are in train to identify the postulated quark-gluon

plasma by detecting di-lepton pairs [6,7,8,9]. Theory is needed to distinguish plasma pairs

from electromagnetic pairs, which will be copiously produced [10,11,12].

In the present paper, we draw back from the program of non-perturbative formulations,

to survey the information which can be gleaned from perturbation theory. While serious

objections have been raised to the use of perturbation theory, we adopt the view in this

paper as in Refs. [13,14], that exact second-order Feynmann perturbation theory can be

used as a heuristic tool. The emphasis on exact theory, in contrast to such formulations as

that of Weizsacker and Williams, is vital. Our calculations in this framework have shown

that electron- positron pairs are produced in significant numbers at large pair masses and

transverse momenta, where virtual photon approximations are invalid.

The remainder of this paper is divided as follows. Section 2 summarizes the exact formu-



lation of perturbation theory. Section 3 deals with some useful analytic simplifications. In

Section 4 we apply our methods to electron, muon and tauon pair production, and to capture

of electrons. Section 5 summarizes some conclusions and points out future directions.

2. Exact Formulations of Inclusive Electromagnetic
Pair Production

Consider a collision between two bare ions a and b, viewed in a frame such that a moves

from left to right at a velocity +/3 parallel to the z-axis, while b moves from right to left at

a velocity —j3 parallel to the z-axis. The nuclei have charges Za and Zb, and masses ma and

mi,. Their trajectories are separated by an impact parameter, p. We employ natural units

defined by h — c = m = e = 1. Each nucleus has a kinetic energy per nudeon, E, related in

these units to the Lorentz factor, 7 = (1 — /52) 2 , by *y = £? + 1.

Suppose the collision produces a lepton pair,

(1)

We shall mostly consider a and b as rigid charge distributions; simultaneous nuclear excitation

can be incorporated in our formulation. In lowest order, (1) is described by the diagrams

in Fig.l. The direct diagram must be added to the crossed diagram, in which the photon

lines are exchanged [13]. If both diagrams are not added coherently, gauge invariance is

seriously violated. This point is frequently mishandled in the literature. We denote the four-

momenta of the leptons by k and q. A key role is played by the four-momenta tranferred at

the photon-lepton vertices,

A = k-p, fi = q-p, (2)

where p refers to the intermediate fermion line. The timelike components of these vectors

have immediate physical interpretations. If wa and a>& are the virtual photon frequencies in



the collider frame, then

Ao = ua, fi0 = u>b- (3 )

The dynamics of electromagnetic pair production follow from the Lagrangian for the

semiclassical coupling of the electromagnetic field to the lepton density,

A-ne(x) = - £ *<(*)7,**(*)[^(*) + At(x)) , (4)
t

The lepton number is separately conserved for each generation £ [10], which we shall consider

independently. The four-potential in the Lorentz gauge Ap
a is a classical field derived from

the nuclear current J£, by the usual relation of electromagnetic theory,

d • dJ> = A"a. (5)

The classical quantities A and J are functions of time, depending parametrically on the

classical trajectories of the ions. Given the Lagrangian (4), we can derive the equations of

motion for state vectors in the Schrodinger picture under a series of assumptions, described

in detail in our earlier papers [15]. All orders of electromagnetic processes can be obtained

from these equations. In general, the elements of the S-matrix connect states which are

products of single-particle and antiparticle states, Xk an<^ Xq~K satisfying

[E{
k
+) ' #o]xi + ) = 0, [M-> - H0]x[-> = 0, (6)

where

E^ = ±(1 + k2) * (7)

e.nd

Ho = a -p + fo- (8)

If we focus on the second-order processes expressed by the diagram in Fig. 1, the relevant

S-matrix element is given by [16],

<f\Sab\i> = ( -0 2 f°° dr fT dr' < f \ K0{0,oo)K0(oo,r)
J — oo J—oo

(9)

x Va(T)Ko(r,T')Vb(T')Ko(r',-oo)Ko(-oo,0) \i >



where

\ i > = \ x (
q - ] > , f > = \ x i + ) > - (io)

and Sba ' s obtained from Sab by reversing the signs of the velocity /3 and the impact parameter

p. The inclusive pair production cross section is given, adequately for the purposes in hand

[13], by the expression

a= fd2p £ £ | < / i [ S a ( , + S f r a | i > | 2 . (11)

We have only made the approximation of neglecting some small interference terms.

For point charges, the nonzero components of the potential from nucleus a, in momentum

space and the Lorentz gauge, are given by,

(12)

A'{a) = PA°{a) .

The potentials from nucleus 6 can be easily obtained from (12) by the substitutions,

We shall later indicate the modifications required for extended charge distributions.

The pair production amplitude for the diagram in Fig. 1 was given in (9). We introduce

Fourier representations for the two interactions in the Schrodinger picture,

Va(wa) = -l0l
PAp{a), H(u%) = - 7 o 7 M p ( 6 ) . (13)

and perform the integrations over time, to find that,



X <k\ Va{ua) \p><p\ Vb(u;b) I q > (14)

The summation on the intermediate states of Ho in (14) is over spin and momentum,

E = EE
(15)

where the momentum in intermediate states is composed of parts transverse and parallel to

the motion of the heavy ions, p = p± + pz$z- The frequencies u>a and o;j, are related to the

running variable w through,

= a;-£?<->. (16)

Adding a»o -\-uif, recovers the conservation of energy. The conservation of momentum parallel

to the collision axis is expressed by the delta functions in (12),

qz-Pz = Hz = "b/P

The frequencies and intermediate longitudinal momentum are determined by (15) and (16)

as functions of /3,

(18)

Thus, for fixed momentum and spin states, the transition matrix element in (14) can be

written as,



x F(k± - pi : u,a)F(px - ft. : u/fc) T ^ p l : 0), (19)

where ^ denotes the impact parameter, and the function F is the scalar part of the field

from each heavy ion. For point charge nuclei, F is given by,

The function T explicitly depends on the velocity of the heavy ions 0, on the transverse

momentum px, and on the states k, q: it is given by,

where tt̂ *̂  is the spinor part of the states x^- Finally, we note that with the expression for

the S-matrix (19), the integration on the impact parameter for the pair cross section can be

explicitly evaluated. Including both the direct and crossed photon contributions yields the

result,

(22)

I 2 ,

where,

{ ) , q:px) = F{kL - ^ : u>a)F{p± - qL : uh) Tkq{p± :

(23)

q : px) = F(fcx - Px : Vb)F{p± - qx : «o) Tkq{px : -0)



The amplitude T, defined in (21), relates the intermediate photon lines to the outgoing

fermion lines. It is conveniently recast by summing over the intermediate spinor indices s, <rp,

to find,

where,

H0(p) =

(25)

and where (o>,pz) depend on /?, as in (18).

In the case of an extended charge distribution, the point charge interactions in momentum

space, denoted by F in (19) and (20), are multiplied by the nuclear elastic form factors GE-

The extension to inelastic nuclear processes has also been worked out [14].

The cross section for lepton production can be evaluated without further approximation

using the Monte Carlo techniques described in Ref. [13]. However it is useful to explore

some approximate analytic expressions.

3. Analytic Reductions

Most approximations to (22) seek to integrate out the transverse momenta

resulting in an expression for the total cross section of the form [17],

<T = j dkzdqJ2K SKJ^WfcJff^a/a.wtimj.), (26)

where

tf = ~(*i+qi) (27)



is the transverse momentum of the pair, and where,

(l + K2)> (28)

is the transverse mass. To derive (26) from (22), the form factors (20) are integrated over

the transverse momentum to obtain "photon fluxes",

: « ) | ' (29)

In electron-positron production, the integral must be cut off at Ax ~ m1 ( but this is un-

necessary for the heavier leptons. The nuclear form factor removes momenta A > l/iZnUC,

where RnW is the nuclear radius in reduced Compton Wavelengths of the lepton in question.

Since this limit is more stringent than the former, the integral is simply taken to infinity.

For electrons we find that,

while for hea\ry leptons,

The functions V and Q(w) are worked out in [13] and [14]; for present purposes, it is enough

to note that for large w , both V, Q{w) ~ ln(l/u/).

We now consider the remaining factor in (26), the effective two-photon cross section,

<Tyy, derived from 7*,. Many approximations can be formulated: the virtual photon method

is not a unique prescription. However we have found that the Two Peak Approximation

introduced in [13] very successfully reproduces exact Monte Carlo calculations, including

differential cross sections, over a wide range of conditions. This method eliminates the

transverse momenta from (22) by observing that the form factors are strongly peaked about

the point

A?x, p i , q±. ~ K (32)

In view of our remark, following (29), this is rendered a better approximation for heavy

leptons by the more localized nature of the form factor in momentum space.
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If all frequencies and momenta in 7", except the leading powers of A and p,, are evaluated

at the point p"± = K, we immediately obtain from (22) an expression for the differential

cross section of the form (26),

^
 a)=

(33)

x [Wo
2 + WfK2}.

The rather complicated functions Wo , Wi, and Z of (&z, qz,m±) are defined by the following

relations:

4 I mi
and

V -L V V2 4- V'2

where Vjt and 1^ are short for,

tt = 4 + ) + *x , r , = £7j-> + g , , (36)

All these quantities are functions of the single transverse mass, m\ — I + K2. We repeat

that this is independent of the choice of gauge, if and only if both diagrams are correctly

included [18].

Finally, we consider the cross section for the capture process,

a + b -» a(/~) + 6 + *+(g). (37)

A gauge invariant result is obtained by folding the matrix element of (22) into the momentum

distribution of the final bound state,

In the Two Peak approximation, we find for capture from a specific vacuum state, (22) into

the momentum distribution if the final bound state,

2 ^ ^ 2

<rk,i
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The single frequency w is given by,

u> = E(a,bd) ~ E{-\ (40)

4. Numerical Results

We shall present exact calculations of the second order perturbation formula described in

Section 2. The integrations in (22) were evaluated by Monte Carlo techniques to an accuracy

of about one percent. Details of the numerical method are given elsewhere [13]. Some

feeling for the numerical effort involved is conveyed by Fig. 2, which shows the numerical

error as a function of the number of Monte Carlo points. Runs as long as 108 points are

needed to accumulate statistics for differential cross sections. Extensive tests of the numerical

procedures have been carried out, including calculations of the pair production starting from

different gauges. Our numerical results can be compared with the two peak formula (33),

which appears nearly to reproduce the exact results over a wide range of energies.

In Fig. 3 we show the variation of the total cross section with energy for colliding beams

of heavy ions. As previously stated, 7 — 1 is the beam kinetic energy per nucleon in units

where the nucleon mass is one. The exact results are compared with two currently quoted

approximations. The cross section for producing an electron pair from ions of charges (Za, Zf,)

is conveniently expressed in terms of a reduced cross section <r0)

«x0 = XZ\Z\*\ (41)

where A = h/mc is the reduced Compton wavelength of the electron. For Au + Au, <x0 =

lA9Kb. Extrapolating the exact results to infinite 7 leads to the result,

c ~ <700or0ln(7)
3 (42)

where, C«, = 2.19. The dotted curve is the equivalent photon approximation of Ref.

[19], which is essentially a modern version of the Weizsacker-Williams method with Coo =
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224/277T ~ 2.64. The dot-dashed curve is calculated from the formulae of Ref. [20], which

attempt to refine the Weizsacker-Williams result. It is correct for large 7, but appears to

break down by as much as a factor of ten for 7 < 20.

The Two Peak approximation reproduces the exact results to about 15% over the range

of energies per nucleon between 3 — 300 GeV, which will be of most experimental interest in

the near future. It has a drawback that it behaves asymptotically as ln(7)2. The origin of

this discrepancy is analyzed in Ref [13], though it has little practical significance, for reasons

explained in Section 5.

Differential cross sections provide more detailed insights. Figures 4 and 5 present angle

and momentum distributions in the laboratory for a fixed target experiment at an energy per

nucleon of 200 GeV. This is equivalent to a colliding beam experiment with 7 = 10. Heavy-

ion beams of this energy are presently available at CERN. The differential cross section of

the produced electron in terms of the laboratory momentum k is obtained from (22) by,

f°° juda

' = Jo dkdk
(43)

where cos(0) = kt/k. The agreement between exact and approximate results, within 20%,

is reassuring. The distributions computed in either way are consistent with a picture in

which single leptons are ejected with kz ~ jmc and k±_ ~ me; in this case, 8 ~ 0.3 deg and

k ~ 200mc.

The one serious failure of the Two Peak approximation, which is shared by all virtual

photon methods, occurs in the differential distribution with respect to the pair mass,

M = [(ko + qo)
2-(k + q y } l (44)

Exact calculations show a long tail falling off roughly as A/"4, which cannot be described by

any virtual photon method [13,14]. An accurate knowledge of this regime may be needed to

design dilepton experiments, particularly since cuts at large M2 are used to enhance hadronic

signals.
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To illustrate the size of predicted cross sections for the heavier leptons, we consider

Au + Au collisions at 7 = 10 and 7 = 100. The cross sections for producing p* pairs at

these energies are respectively, 4.2 mb and 178 mb, using a realistic nuclear form factor, and

the Two Peak approximation. Exact Monte Carlo calculations in progress are giving results

in close agreement. The exact point charge result is 645 mb.

For r* we find that the cross sections are negligible (<C 1 nb) at 7 = 10. At 7 = 100

however, we find 2.6 fib. Curiously the contribution from incoherent production by all the

protoiic in each nucleus is only 1.7 nb. From the perspective of RHIC, these cross sections

translate into count rates of several muon pairs a minute, and several tauon pairs an hour.

Finally, we mention preliminary calculations on capture in S + Au collisions at a fixed

target energy of 200 Gev/nucleon. Capture to the sulfur nucleus is about 2 b, compared

with a loss rate, calculated analogously, of 800 b. With such a ratio of capture to loss, the

recombined ions can probably be detected in an experiment at the CERN SPS facility.

5. Conclusions

We have seen that lepton pair production by electromagnetic means is a measureable

process, and a potentially valuable probe of nuclear form factors at large values of the

momentum transfer. A knowledge of the cross sections is also needed in accelerator design,

and in the design of other experiments.

What is the status of the perturbation theory used throughout this paper? Caution is

necessary, since at least three reasons can be advanced for believing that low order per-

turbation theory gives an incomplete description of pair production in heavy-ion collisions,

(i) The supposedly small parameter Za is comparable with unity. The asymptotic ln(7)3

dependence of two photon theory cannot be correct. The reasons supporting this statement

are very simple, though they are rarely discussed, (ii) The Froissart cross section bound [21]
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is believed to hold for electromagnetic, as well as for all other processes. This imposes a

limit on the pair cross section at high energies; namely,

a < const x ln(7)2. (45)

(iii) In higher orders, the N-photon contribution to the cross section ~ ln(-y)N+1 at least,

demonstrating that the perturbation series should be resummed.

On the other hand, we believe that the second order perturbation results can be used

heuristically to derive effective Lagrangians which can be solved non-perturbatively. The

two photon amplitude for pair production is reproduced, to a good approximation over

much of phase space, by the effective Lagrangian involving only products of invariants of the

electromagnetic and fermion fields,

Cj = -\(£2 - B2)U + ^T(£ • B)h^ (46)

m\ rriy

where £ is the electric field, B the magnetic field in the radiation gauge, and Cj and c2 are

constants. The transverse mass

m± = m2 + p2
L = m2 - V]_ (47)

is of course an operator, in this context. However, if we make an ansatz for the wavefunction

of each vacuum state

< q | f, t > = # ( f , t) = V x ( r l , t)^(r1 \ z,t) (48)

and assume that ijj^ is a slowly varying function of rj_, we arrive at a set of one dimensional

equations for the functions >̂|| at some discrete set of r^. The coupling between different \j)\\ is

expressed though an auxiliary equation for ip±, which involves all the ip\\ in a self-consistent

fashion. Systems with this type of structure are referred to by Applied Mathematicians

as one-and-a-half dimensional. They provide a tractable framework for a non-perturbative

description of the vacuum.

It is also probable that in many regimes of energy and momentum transfer, perturbation

theory is entirely adequate, especially if the particles produced are very heavy. A challenging
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area is that of non-Abelian gauge theories, where even perturbation theory involves delicate

considerations of gauge fixing. The simplest example would be the production of W*~ and

Higgs bosons in electroweak theory. All these directions are being pursued.
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Figure Captions

Figure 1: Direct (a), and crossed (b), Feynmann diagrams for pair production in a heavy-ion

collision.

Figure 2: Percentage error in Monte Carlo integration scheme, A, vs. total number of

points accumulated in a series of runs, N.

Figure 3: Dependence of pair production cross section with energy. The ratio of the cross

section to the reduced cross section denned by (41) is plotted vs. 7. Full line: exact numerical

result; dashed line: equivalent photon approximation [19]; long-short dashed line: modified

WeizLacker-Williams [20].

Figure 4: Angular distribution in the laboratory for a fixed target experiment at an energy

per nucleon of 200 GeV, equivalent to a colliding beam experiment with 7 = 10. The

normalized differential cross section (43) is plotted vs. angle. Full line: exact numerical

result; long-short dashed line: two peak approximation (33).

Figure 5: Momentum distribution in the laboratory for a fixed target experiment at an

energy per nucleon of 200 GeV, equivalent to a colliding beam experiment with 7 = 10.

The normalized differential cross section (43) is plotted vs. momentum. Full line: exact

numerical result; long-short dashed line: two peak approximation (33).
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